| 刘璐,金哲民,朱雨欣,曹飞飞,胡延岗,刘建华,王广钊.氮掺杂石墨烯负载双金属分解甲醇制氢的密度泛函理论研究[J].分子催化,2025,39(4):0 |
| 氮掺杂石墨烯负载双金属分解甲醇制氢的密度泛函理论研究 |
| Density Functional Theory Study on Nitrogen-Doped Graphene-Supported Bimetallic Catalysts for Hydrogen Production via Methanol Decomposition |
| 投稿时间:2025-04-22 修订日期:2025-05-10 |
| DOI:10.16084/j.issn1001-3555.2025.04.003 |
| 中文关键词: 甲醇分解制氢 石墨烯 双金属 密度泛函理论 |
| 英文关键词:Methanol decomposition for hydrogen production Graphene Bimetallic catalysts Density functional theory |
| 基金项目:国家自然科学基金资助项目(52436005, 51906090);安徽省建设领域碳达峰碳中和战略研究院开放课题(No. STY-2024-02) |
|
| 摘要点击次数: 306 |
| 全文下载次数: 1011 |
| 中文摘要: |
| 甲醇催化裂解制氢是氢能储运的重要环节。本文基于密度泛函理论计算,研究了甲醇在氮掺杂石墨烯负载七种双金属催化剂(Ir-Pd、Rh-Pd、Ru-Pd、Ni-Pd、Ni-Ni、Pd-Pd、Ru-Ru)表面的吸附特性及分解路径。计算结果表明,甲醇吸附时,分子的羟基氢与表面金属成键,其中Ru-Pd催化剂对甲醇的吸附能最强(-0.83 eV),显著优于其他体系。在氮掺杂石墨烯负载Ru-Pd上的甲醇分解反应存在两条路径:CH2OH*路径(先断裂O-H键再断裂C-H键)和CH3O*路径(先断裂C-H键再断裂O-H键)。两条路径的决速步骤均为初始步骤,CH3O*路径的决速步骤能垒为1.31 eV,低于CH2OH*路径的1.46 eV,表明CH3O*路径更利于甲醇分解制氢反应的发生。 |
| 英文摘要: |
| Methanol catalytic decomposition for hydrogen production is a critical process for hydrogen energy storage and transportation. This study investigates the adsorption characteristics and decomposition pathways of methanol on seven bimetallic catalysts (Ir-Pd, Rh-Pd, Ru-Pd, Ni-Pd, Ni-Ni, Pd-Pd, Ru-Ru) supported on nitrogen-doped graphene using density functional theory (DFT) calculations. The computational results reveal that during methanol adsorption, the hydroxyl hydrogen of methanol bonds with surface metal atoms, with the Ru-Pd catalyst exhibiting the strongest adsorption energy (-0.83 eV), significantly outperforming other systems. Two distinct decomposition pathways were identified for methanol on the Ru-Pd/N-doped graphene system: the CH2OH* pathway (involving sequential cleavage of the O?H bond followed by the C?H bond) and the CH3O* pathway (featuring initial C?H bond rupture prior to O?H bond dissociation). Both pathways share the initial step as the rate-determining step. The energy barrier of the rate-determining step for the CH3O* pathway (1.31 eV) is notably lower than that of the CH2OH* pathway (1.46 eV), indicating the CH3O* pathway is more favorable for methanol decomposition toward hydrogen production. |
| HTML 查看全文 查看/发表评论 下载PDF阅读器 |