刘璐,金哲民,朱雨欣,曹飞飞,胡延岗,刘建华,王广钊.氮掺杂石墨烯负载双金属分解甲醇制氢的密度泛函理论研究[J].分子催化,2025,39(4):0
氮掺杂石墨烯负载双金属分解甲醇制氢的密度泛函理论研究
Density Functional Theory Study on Nitrogen-Doped Graphene-Supported Bimetallic Catalysts for Hydrogen Production via Methanol Decomposition
投稿时间:2025-04-22  修订日期:2025-05-10
DOI:10.16084/j.issn1001-3555.2025.04.003
中文关键词:  甲醇分解制氢  石墨烯  双金属  密度泛函理论
英文关键词:Methanol decomposition for hydrogen production  Graphene  Bimetallic catalysts  Density functional theory
基金项目:国家自然科学基金资助项目(52436005, 51906090);安徽省建设领域碳达峰碳中和战略研究院开放课题(No. STY-2024-02)
作者单位E-mail
刘璐 江苏大学 能源与动力工程学院, 江苏 镇江 212013 lliuenergy@ujs.edu.cn 
金哲民 江苏大学 能源与动力工程学院, 江苏 镇江 212013  
朱雨欣 江苏大学 能源与动力工程学院, 江苏 镇江 212013  
曹飞飞 杭州楚环科技股份有限公司, 浙江 杭州 310015  
胡延岗 江苏大学 能源与动力工程学院, 江苏 镇江 212013  
刘建华 江苏大学 能源与动力工程学院, 江苏 镇江 212013  
王广钊 长江师范学院 电子信息工程学院 超常配位键工程与新材料技术重庆市重点实验室, 重庆 408100  
摘要点击次数: 306
全文下载次数: 1011
中文摘要:
      甲醇催化裂解制氢是氢能储运的重要环节。本文基于密度泛函理论计算,研究了甲醇在氮掺杂石墨烯负载七种双金属催化剂(Ir-Pd、Rh-Pd、Ru-Pd、Ni-Pd、Ni-Ni、Pd-Pd、Ru-Ru)表面的吸附特性及分解路径。计算结果表明,甲醇吸附时,分子的羟基氢与表面金属成键,其中Ru-Pd催化剂对甲醇的吸附能最强(-0.83 eV),显著优于其他体系。在氮掺杂石墨烯负载Ru-Pd上的甲醇分解反应存在两条路径:CH2OH*路径(先断裂O-H键再断裂C-H键)和CH3O*路径(先断裂C-H键再断裂O-H键)。两条路径的决速步骤均为初始步骤,CH3O*路径的决速步骤能垒为1.31 eV,低于CH2OH*路径的1.46 eV,表明CH3O*路径更利于甲醇分解制氢反应的发生。
英文摘要:
      Methanol catalytic decomposition for hydrogen production is a critical process for hydrogen energy storage and transportation. This study investigates the adsorption characteristics and decomposition pathways of methanol on seven bimetallic catalysts (Ir-Pd, Rh-Pd, Ru-Pd, Ni-Pd, Ni-Ni, Pd-Pd, Ru-Ru) supported on nitrogen-doped graphene using density functional theory (DFT) calculations. The computational results reveal that during methanol adsorption, the hydroxyl hydrogen of methanol bonds with surface metal atoms, with the Ru-Pd catalyst exhibiting the strongest adsorption energy (-0.83 eV), significantly outperforming other systems. Two distinct decomposition pathways were identified for methanol on the Ru-Pd/N-doped graphene system: the CH2OH* pathway (involving sequential cleavage of the O?H bond followed by the C?H bond) and the CH3O* pathway (featuring initial C?H bond rupture prior to O?H bond dissociation). Both pathways share the initial step as the rate-determining step. The energy barrier of the rate-determining step for the CH3O* pathway (1.31 eV) is notably lower than that of the CH2OH* pathway (1.46 eV), indicating the CH3O* pathway is more favorable for methanol decomposition toward hydrogen production.
HTML  查看全文  查看/发表评论  下载PDF阅读器