文章编号: 1001-3555(2025)02-0188-11

综述

低碳烷烃类 VOCs 催化燃烧耐 SO2 催化剂研究现状及进展

彭 钎^{1,2}, 董 芳², 韩维亮², 韩维高², 唐志诚^{2*}, 周智芳^{1*} (1. 兰州理工大学 石油化工学院, 甘肃 兰州 730050; 2. 中国科学院兰州化学物理研究所 精细石油化工中间体国家工程研究中心, 甘肃 兰州 730000)

摘要:低碳烷烃分子结构稳定, C—H 键的断裂能垒较高, 被认为是 VOCs 中最难降解的成分之一. 催化燃烧技术因 起燃温度低、适用范围广、无二次污染等特点已被广泛应用于 VOCs 的治理. 目前, 低碳烷烃类 VOCs 催化燃烧催 化剂包括贵金属催化剂和非贵金属催化剂两大类. 在实际工业应用中, 含硫物种通常会与 VOCs 分子竞争吸附到 催化剂活性位点上, 造成活性中心的失活. 某些工况下, 含硫物种甚至会与活性组分或载体发生反应生成硫酸盐, 造成不可逆的中毒. 本文针对催化剂表面硫中毒失活的机理进行了深入探讨, 总结了低碳烷烃 VOCs 催化燃烧贵 金属和非贵金属催化剂的主要抗硫中毒策略, 包括构建双贵金属催化体系、元素掺杂、酸化处理以及构筑核壳结 构催化剂等. 最后, 提出了具有工业应用前景的抗硫策略, 并对未来的发展方向进行了展望.

关键词: 低碳烷烃 VOCs; 催化燃烧; 耐硫性; 催化剂; 核壳结构 中图分类号: O643.36 文献标志码: A DOI: 10.1

DOI: 10.16084/j.issn1001-3555.2025.02.009

随着我国环境保护要求的不断提升, VOCs 已 成为大气污染治理的重点领域. VOCs 通常包括烷 烃类、烯烃类、芳香烃类以及含氧、氮、硫和氯的碳 氢化合物等, 对生态系统和人类健康造成严重威胁. 目前, VOCs 的处理技术中, 催化燃烧法因其处理效 率高、二次污染小、能耗相对较低等优势而备受关 注^[1]. 低碳烷烃是指碳原子数在 1~4 之间的烷烃, 常 见的有甲烷、乙烷、丙烷和丁烷, 通常来源于石油气 及石油伴生气. 由于其分子结构稳定, C—H 键的断 裂能垒较高, 低碳烷烃被认为是 VOCs 中最难 降解的成分之一. 催化燃烧法也是去除低碳烷烃 VOCs 最有效的技术之一^[2].

催化燃烧技术的核心在于研制高效、稳定的催化剂,以确保在各种恶劣工况下高效降解污染物.催化剂通常由活性组分和载体构成,根据活性组分的不同,主要分为贵金属催化剂(如Pt、Pd、Ru、Rh等)和非贵金属催化剂(如Co、Ni、Mn、Ce等).贵金属催化剂因其高催化活性和优异的抗失活性能,在低碳烷烃 VOCs 深度氧化方面展现出巨大潜力,

但其储量有限、成本高昂,同时容易发生烧结和硫 中毒等问题.相比之下,非贵金属催化剂具有较高的 催化性能和良好的稳定性,且资源丰富、成本低廉, 但其整体活性仍略逊于贵金属催化剂^[3].

在实际应用中,石油化工行业和汽车尾气排放 中常含有 H₂S 和 SO₂等含硫物质,这些杂质对催化 反应造成诸多负面影响,进而导致催化剂中毒.具体 而言, SO₂往往与反应物分子争夺活性位点,降低 催化效率,引起催化剂可逆性失活;或与催化剂的 活性组分和载体发生反应,生成硫酸盐,造成不可逆 性失活.因此,设计具有高催化活性和优异抗硫性能 的催化剂,成为当前亟待解决的关键问题.近年来, 已有一些研究者对 VOCs 催化氧化催化剂的硫中毒 机制及抗硫中毒策略进行了探讨与总结.Wu 等⁽⁴⁾ 对 VOCs 催化氧化催化剂的硫中毒影响因素 (比如 硫物质的种类、载体的理化性质和反应温度)进行 了论述,并根据影响因素提出了相应的耐硫性改 善方法,比如通过控制形貌和提高分散度来增强 氧化还原性、改变活性组分粒径大小以抑制硫化物

收稿日期: 2024-12-10;修回日期: 2025-01-20.

基金项目: 甘肃省重点研发计划 (23YFFA012, 24YFFA011)、甘肃省自然科学基金项目 (23JRRA638, 24JRRA066, 24JRRA047)、兰州市科技计划项目 (2023-3-35)、兰州市城关区科技计划项目 (2024-rc-4) [The Key Research and Development Program of Gansu Province (23YFFA0012, 24YFFA011), Province Natural Science Foundation of GanSu (23JRRA638, 24JRRA066, 24JRRA047), Science and Technology Program of Lanzhou City (2023-3-35), Science and Technology Program of Chengguan District (2024-rc-4)].

作者简介: 彭钎 (1998-), 女, 硕士研究生, 研究方向为环境催化. E-mail: pengqian2022@163.com[Peng qian(1998-), female, master degree candidate, mainly engaged in research of environmental catalysis. E-mail: pengqian2022@163.com].

^{*} 通信联系人, E-mail: tangzhicheng@licp.cas.cn; zhouzf@lut.edu.cn.

吸附性能以及添加助剂保护活性组分,这些改进 策略对于含硫环境中催化剂的效率具有较好的提升 效果. 但是, 这些改善方法适用性较差, 在推广应用 时仍有欠缺. Geng 等^[5] 对目前催化燃烧催化剂无机 硫及有机硫的抗毒改性策略进行了系统论述,比如 构建双贵金属催化体系、对载体进行改性和添加助 剂等,这些策略都具有很好的借鉴意义.但是,作者 未对催化剂硫中毒的机理进行详细探讨,在论述的 系统性方面仍然稍显不足. Yang 等^[6] 对 VOCs 催化 燃烧催化剂的 SO,中毒机制以及抗 SO,中毒策略 进行了深入探讨,但作者未探讨贵金属和非贵金属 催化剂 SO2 中毒机制的区别, 而且主要关注于芳烃 类 VOCs 催化氧化贵金属催化剂的抗硫策略. 因此, 为填补上述研究的空缺,本文分别探讨了贵金属及 非贵金属催化剂的 SO2 中毒机制,系统论述了低碳 烷烃类 VOCs 催化燃烧贵金属及非贵金属催化剂实 用可行的抗毒策略,以期为未来的相关研究提供一 定的参考.具体来说,本文首先简要介绍了目前低碳 烷烃 VOCs 催化燃烧反应中常用的催化剂, 再探讨 了催化剂的 SO₂ 中毒机制, 总结并分析了目前常用 的抗硫中毒策略.最后,指出了具有应用前景的抗硫 策略,并对未来的发展方向进行了展望.

1 低碳烷烃 VOCs 催化燃烧催化剂

从图 1(a) 可以看出, 低碳烷烃 VOCs 催化燃烧

已被广泛研究,近十年来大部分研究集中在甲烷和 丙烷的氧化上.迄今为止,多种催化剂已被应用于低 碳烷烃 VOCs 催化燃烧,包括以 Pd、Pt 等贵金属元 素为活性相的催化剂和以 Co、Ni、Mn、Ce 等过渡 金属和稀土元素以及金属氧化物为活性相的非贵金 属催化剂 (图 1(b)).

贵金属催化剂在短链烷烃的深度氧化中表现出 优异的低温活性,但其活性相通常为表面能较高的 纳米级贵金属粒子,在热环境中易迁移团聚甚至是 烧结失活,而且由于储量有限导致成本很高,这些因 素都为贵金属催化剂的进一步广泛应用带来了负面 影响^[2]. Pd 基和 Pt 基催化剂是目前低碳烷烃 VOCs 燃烧中研究最多的贵金属催化剂,具有优异的 C—H 键活化能力,分别对甲烷和丙烷的完全氧化具有优 异的催化活性^[7]. Pd 基催化剂对低碳烷烃的氧化依 赖于 Pd 的氧化还原循环,但其活性物种仍不明确, 而 Pt⁰物种则一般被认为是 Pt 基催化剂的主要活性 位点^[3].

非贵金属催化剂主要分为单一金属氧化物催化 剂、复合金属氧化物催化剂(例如钙钛矿和水滑石) 和负载型过渡金属催化剂^[3]. Co、Mn等过渡金属元 素通常具有多变的价态,能够形成具有多种晶型和 形状的氧化物,可经晶面和形貌调控等方式进行催 化性能调节,而且储量丰富、价格低廉,但其用作催 化剂时活性普遍不及贵金属催化剂^[3]. 当 Co、Mn 等

图 1 (a) 过去十年关于催化燃烧消除低碳烷烃 VOCs 的文章数量; (b) 低碳烷烃 VOCs 催化燃烧活性金属 研究文献汇编 (其他金属包括 Au、Ag、Cr 和 V)

Fig.1 (a) The number of published articles on abatement of low-carbon alkane VOCs by catalytic combustion in the last decade;

(b) A compilation of research literature on active metals for catalytic combustion of

low-carbon alkane VOCs (other metals include Au, Ag, Cr and V)

The data obtained by searching key words of (a) methane, ethane, propane, butane, and

(b) Pd, Pt, Ru, Rh, Co, Mn, Ce, Ni, Cu, Fe and others on the Web of Science

元素同时使用时,可以互相进行氧化还原循环以促进电子转移,增加复合金属氧化物催化剂的活性^[3]. 钙钛矿材料具有氧空位丰富、热稳定性及机械稳定性好和A、B位阳离子灵活可调等优点,在低碳烷烃 VOCs 催化燃烧中备受青睐^[3].水滑石材料经煅烧得到的混合金属氧化物具有层板元素种类及比例可调、活性组分分散性好、比表面积大和热稳定性好等优点,用于丙烷氧化时表现出很高的催化活性^[2].

2 在含硫工况下催化剂的抗中毒性能

2.1 中毒原因及机制

2.1.1 贵金属催化剂表面硫中毒机制

Yuan 等^[8] 发现 P₁₃ 团簇上 SO₂*的吸附能比 CH^{*}₄ 大十倍以上,而且,相比于吸附的CH₄,吸附的SO^{*}, 与 Pd13 团簇之间的相互作用更强, 即 Pd13 团簇更易 吸附SO^{*}与CH^{*}发生竞争吸附行为,减少了CH^{*}的可 用吸附位点,致使甲烷氧化活性下降.这种由 SO2 竞争吸附位点引起的失活在停止通入 SO2 后会逐 渐恢复,即这种失活是可逆的.此外,SO2还可能引 起活性 PdO 相的部分还原,并与 Pd 形成不具催化 活性的 Pd-SO, 中心, 进一步形成稳定的 PdSO, 和 PdSO4, 这种金属硫酸盐的形成减少了配体不饱 和 Pd 原子的数量并改变了 Pd 原子的电子结构, 致 使催化剂不可逆失活^[9]. 但是, 这种硫酸盐可能在更 高的反应温度下溢出到载体上或者部分分解,当停 止通入 SO, 时, 催化活性部分恢复, 也即 SO, 引起 催化剂的部分不可逆失活^[9]. 除与活性相相互作用 外, SO, 还可能与催化剂载体发生反应. 碱性氧化 物 CeO,和两性氧化物 Al₂O,作载体时, Pt/CeO,和 Pt/Al₂O₃催化剂在高温下易与 SO₂形成载体硫酸 盐,引起催化活性下降^[10].

以 Pd/Al₂O₃ 催化剂和 CH₄ 为例, 贵金属催化剂 SO₂ 中毒过程如图 2 所示. 首先, SO₂ 与 CH₄ 竞争吸附贵金属活性位点, 降低 CH₄ 对活性位点的可

及性,使催化活性下降.此时若停止通入 SO₂,吸附 的 SO₂逐渐解吸,活性可以恢复,即催化剂发生可 逆性失活.然后,吸附的 SO₂还原部分 PdO 活性相, 或者在贵金属上发生一系列氧化反应,生成贵金属 的亚硫酸盐和硫酸盐并逐渐长大,进一步毒害活性 位点.最后,活性相上形成的硫酸盐向载体溢出,形 成载体硫酸盐.此时若停止通入 SO₂,部分不稳定 的硫酸盐在较低温度下分解,而稳定的硫酸盐在 贵金属和载体上保留,带来不可恢复的活性损失,造 成催化剂不可逆性失活.硫物种的形成和稳定性 决定了 SO₂对催化性能的影响,而催化剂对 SO₂的 亲和力受贵金属活性相和载体性质 (如酸碱性)的 影响.

2.1.2 非贵金属催化剂表面硫中毒机制

负载型过渡金属催化剂的活性相和载体都有可能与 SO₂ 反应形成硫酸盐,造成催化剂失活. SO₂ 与 CuO/γ-Al₂O₃ 催化剂的活性组分 CuO 反应,在催 化剂表面形成 CuSO₄ 并占据表面,减少甲烷的活化 位点数量,降低催化活性.此外, SO₂ 还会与该催化 剂的载体发生反应形成 Al₂(SO₄)₃,降低催化剂比表 面积,阻碍 CH₄ 分子的吸附,引起活性下降^[11].

复合金属氧化物催化剂的活性相是其体相氧化物,暴露于 SO₂气氛中时易形成稳定的硫酸盐,且 其失活机制不同于贵金属催化剂. Lv 等^[12]将 SO₂ 先吸附在钙钛矿表面阴离子空位上,之后扩散到催 化剂内部与 LaCoO₃反应形成 La₂(SO₄)₃、La₂(SO₃)₃ 和 CoO 等物质,起始中毒阶段钙钛矿物理性能轻微 改变但结构仍未被破坏,当 SO₂ 与钙钛矿形成大量 La₂(SO₄)₃和 CoO 时,钙钛矿结构被破坏,导致不可 逆中毒. Martinovic 等^[13]提出 LaCoO₃的硫中毒过 程为,最初活性位点被 SO₂ 阻断, La₂(SO₄)₃ 在表面 生长而 Co 不受影响;高于 500 °C 时,表面结合的硫 酸盐迁移至钙钛矿体相中. Kaliaguine 等^[14]提出 LaCo_{1-x}Fe_xO₃ 钙钛矿上的中毒反应分为两步,首先, 表面硫酸盐的形成致使催化活性随时间呈指数级下

Fig.2 The poisoning mechanism of SO₂ on noble metal catalysts (Pd/Al₂O₃ catalyst and CH₄ as an example)

降,再生过程中部分硫物种解吸,这一步的失活是可 逆的;然后,体相硫酸盐的形成使甲烷转化率呈线 性下降,这是由于催化剂中硫物种随时间呈线性 积累,XRD表征显示催化剂明显转化为 La₂(SO₄)₃、 Co₃O₄和 Fe₂O₃,引起不可逆性失活.

非贵金属催化剂 SO₂ 中毒过程如图 3 所示. 首 先, SO₂ 分子吸附在催化剂表面上, 被表面物质氧化 形成表面硫酸盐, 引起催化剂物理性能的轻微变化 (比如孔道堵塞、比表面积下降),反应物分子的吸附 与活化受到抑制,催化活性下降.但催化剂结构未被 破坏,停止通入 SO₂时,仍可能由于硫酸盐的部分 分解而使活性恢复,即催化剂发生可逆性失活.之 后,催化剂表面硫酸盐向体相迁移或者 SO₂扩散到 内部与体相氧化物直接反应致使催化剂大量转化为 硫酸盐,催化剂的结构被破坏,活性位点不能重新被 释放,造成不可逆失活.

图 5 非页並周催化剂 SO₂ 中母化理 Fig.3 The poisoning mechanism of SO₂ on non-noble metal catalysts

2.2 抗 SO2 中毒策略

目前,提升低碳烷烃 VOCs 催化燃烧催化剂耐 硫性的方法主要有构建双贵金属催化体系、元素掺 杂、酸化处理以及构筑核壳结构等.一般来说,构建 双贵金属催化体系可以改变主活性相的配位环境, 从而减弱其对 SO₂ 的吸附能力;此外,添加的贵金 属还能充当牺牲剂优先吸附 SO₂,从而延缓 SO₂ 对 主活性相的毒害.向活性组分或载体中掺杂元素可 以优先吸附 SO₂或者在活性相中生成易吸附 SO₂ 的新相,从而延缓活性相与 SO₂的相互作用;此外, 某些掺杂的元素还可以起到与酸化处理类似的作 用,即提升催化剂酸性,从而抑制 SO₂的吸附.将活 性组分包覆进载体中构筑核壳结构催化剂可以阻 碍 SO₂与活性位点的接触,从而减轻毒害作用.

2.2.1 构建双贵金属催化体系

SO₂在氧化还原反应中通常表现出还原性, SO₂的吸附和氧化可以认为是通过将 SO₂的电子传 递给活性金属来实现的,因此,抑制这种电子转移过 程是阻碍 SO₂与活性位点作用的关键^[15].有研究指 出^[16],添加第二种贵金属组分可以使活性金属电子 云密度增加,给电子能力增强,难以从外部获得电 子,从而减少 SO₂的吸附,此外,贵金属之间的协同 作用还可以使催化体系低温活性增强. Ji 等^[17]采用 超声波辅助湿浸渍法合成的双金属 IrPt_{0.5}/TiO₂ 催 化剂,在通入 52.36 mg·m⁻³ SO₂ (25 ℃, 101.325 kPa) 的 30 h 甲烷氧化测试中转化率基本不变, IrPt/TiO₂ 催化剂抗硫机理如图 4(a) 所示. 结合表征和 DFT 计 算表明, Ir 和 Pt 之间的强电子相互作用诱导形成 了富电子 Ir 结构. 这种富电子 Ir 结构提供了更多 氧空位缺陷并提升了氧化还原能力, 使 Ir 具备更强 的给电子能力, 从而降低 SO₂ 的吸附趋势, 同时增 强了对 O₂ 的吸附和活化能力, 从而实现低温氧化 活性的提升. Yashnik 等^[18] 研究发现, 与单金属催 化剂相比, 0.33Pt-0.67Pd(0.27)/MnLaAl₁₁O₁₉ 双金属 催化剂表现出更好的抗硫性. 在 670 ℃ 条件下通入 2618.05 mg·m⁻³ SO₂ (25 ℃, 101.325 kPa) 对其进行 稳定性测试, 该催化剂始终保持 99% 的甲烷转化 率, 这归因于催化剂中 PtPd 合金的作用.

以 Pt 为主活性相的双贵金属催化体系中, 添加 其他贵金属元素以保护高氧化态的 Pt 不被 SO₂ 还 原可以显著提升催化剂对 SO₂ 的耐受性. Ohtsuka 等^[22]采用共浸渍法制备了 Ir-Pt/ZrO₂ 催化剂用于甲 烷催化燃烧, 研究发现, 与 Ir/ZrO₂ 和 Pt/ZrO₂ 单金属 催化剂相比, Ir-Pt/ZrO₂ 催化剂的活性显著提升, 且 在 SO₂ 气氛中失活率较低. 这归因于 Ir 能够抑制 SO₂ 对 Pt 的还原, 从而维持 Pt⁴⁺的稳定存在, 降低 SO₂ 引起的失活程度. Ohtsuka 等^[23] 还发现添加 Ru 同样能使 Pt/ZrO₂ 催化剂中的 Pt 以高氧化态 (类似 于 Pt⁴⁺) 形式存在, 从而使 Ru-Pt/ZrO₂ 催化剂在 SO₂ 气氛中表现出良好的耐受性.

图 4 贵金属催化剂抗 SO₂ 中毒策略: (a) IrPt/TiO₂ 催化剂抗硫机理示意图^[17]; (b) SO₂ 中毒的 1.9%Pt-3.8%Pd/Al₂O₃ 样品在 再生程序后的 STEM 图像和 EDX 图谱^[19]; (c) 经过硫化稳定性测试的催化剂总酸度/碱度与硫含量的关系 (反应条件: 1% CH₄, 5 % O₂ (体积比), 130.90 mg·m⁻³ SO₂ (25 ℃, 101.325 kPa), 以 N₂ 为平衡气体, GHSV = 50 000 mL·h⁻¹·g⁻¹)^[20]; (d) Pd/Al₂O₃、Pd/S-1 和 Pd@S-1 上的硫化模式示意图^[21]

Fig.4 Anti SO₂ poisoning strategies for noble metal catalysts: (a) Mechanism schematic of sulfur resistance on the IrPt/TiO₂ catalyst^[17]; (b) STEM image and EDX-mapping of the SO₂-poisoned 1.9%Pt-3.8 %Pd/Al₂O₃ sample after the regeneration procedures^[19]; (c) Dependence of the total acidity/basicity on the sulfur content of sulphated catalysts went through stability tests (Reaction conditions: 1% CH₄, 5 % O₂, 130.90 mg·m⁻³ SO₂ (25 °C, 101.325 kPa) in N₂ as balance gas, GHSV = 50 000 mL·h⁻¹·g⁻¹)^[20]; (d) Schematic diagram of the sulfidation patterns on Pd/Al₂O₃, Pd/S-1 and Pd@S-1^[21]

引入其他贵金属元素优先吸附 SO₂并与之作 用,可以延缓 SO₂与主活性相的相互作用. Corro 等^[24]将通过浸渍法得到的 Pt-Pd/y-Al₂O₃样品在氢 气流中还原 8 h, 然后在含 130.90 mg·m⁻³ SO₂ (25 ℃, 101.325 kPa) 和 5% O₂ 的氮气流中 500 ℃ 处理 5 h 制备了还原硫酸化 Pt-Pd/y-Al₂O₃ 催化剂,长时间的 催化测试显示该催化剂在暴露于含 130.90 mg·m⁻³ SO₂ (25 ℃, 101.325 kPa) 的反应混合物中时对甲烷 的催化活性几乎不受影响. XPS 分析表明, 该双金 属催化剂上存在 Pt(0) 金属表面物种, 它可以更快 地与 SO₂作用,降低 Pd 表面物种与 SO₂作用的 可能性,从而降低其对甲烷氧化反应的失活.类似 的第二贵金属牺牲保护作用在其他研究中也有 报道, Sadokhina 等^[19]研究发现,相较于 Pd/Al₂O₃, PtPd/Al₂O₃催化剂能在 SO₂气氛中维持更长时间的 稳定性. TEM 和 EDX 映射结果显示 (图 4(b)), 硫在 贵金属颗粒中的分布不均,显著富集于富含 Pt 的位 置. 这种在 Pt 位点的硫酸盐富集现象可能通过保

护 Pd 位点, 减缓了双金属催化剂在含硫环境中的 失活过程. 同样, Zhang 等^[25] 研究也表明在 Pd 基催 化剂中引入 Pt 后, 可以使最初吸附在 PdO 活性相 上的部分 SO₂ 以分子状态优先吸附在 Pt 位点上, 从 而保护活性 PdO 相免受 SO₂ 毒害. 然而, 第二种贵 金属的过量添加可能抑制催化活性, Wilburn 等^[26] 对比了不同 Pt/Pd 比例对 Pt-Pd/Al₂O₃ 催化剂在 SO₂ 环境中形成表面硫物种的影响. 研究发现, 过量的 Pt 会降低催化剂形成硫酸盐的能力, 使 SO₂ 分子和 表面亚硫酸铝物种在更宽的温度范围内抑制甲烷反 应. 因此, 有必要优化双贵金属催化体系中第二种贵 金属的添加比例.

2.2.2 元素掺杂

向贵金属催化剂载体中掺杂优先吸附 SO₂ 的 元素可以延缓 SO₂ 对贵金属的毒害作用. Hao 等^[27] 制备了一种介孔 Na 掺杂氧化锰 (meso-Na_xMnO_y) 负载的铂钴双金属单原子催化剂 (Pt₁Co₁/meso-Na_xMnO_y),该催化剂在丙烷氧化反应中表现出良好

的 SO, 耐受性. 通过 SO,-TPD 和原位 DRIFTS 表征 发现, 掺杂 13.8%(质量分数) 的 Na 后, SO2优先吸 附于 Pt₁Co₁/meso-Na₂MnO₂ 的 Na 位点上, 抑制 SO₂ 在 Na, MnO, 载体上的吸附, 从而有效保护了活性 Mn、Pt和Co免受SO2毒害. Venezia等^[28]采用溶 胶-凝胶法制备的 TiO, 改性 SiO, 载体负载 1% Pd (质量分数)所制成的催化剂表现出对 SO2 的优异耐 受性, 这归因于 SO2 与 TiO2 的优先相互作用以及 SO_x容易从高表面积 SiO₂ 中解吸. 可硫酸化的 TiO₂ 在反应过程中充当 SO; 清除剂, 与不可硫酸化的高 表面积 SiO,相结合,在长时间暴露于有氧或无氧 的 SO₂ 中后, 可以更容易地去除含硫物质. 同样的硫清 除效应在其他研究中也有报道, Caravaggio 等^[29] 通 过在 SBA-15 中掺入质量分数为 15% Zr 后负载 2% Pd 和 4% Pt 所制备的 2Pd/4Pt/15Zr/SBA-15 催化剂 用于甲烷氧化时表现出良好的耐硫性,这归因于 Zr 的硫清除作用有效保护活性金属免受 SO, 毒害.

钙钛矿催化剂中可以掺入能优先吸附 SO₂的 元素,从而避免活性位点被硫酸化. Rosso 等^[30] 通过 引入过量 MgO 减缓了 LaMn_{1-x}Mg_xO₃:yMgO 催化 剂 (x=0, 0.2, 0.5, y=2, 6, 17) 硫中毒,这是因为 MgO 可能优先吸附 SO₂ 形成表面硫酸盐,从而允许钙钛 矿相的活性位点在更长时间内避免硫中毒. 但是 MgO 相上的表面硫酸盐可能对钙钛矿表面具有屏 蔽作用,阻止反应气体到达钙钛矿相的活性位点. 暴 露于 SO₂ 更长时间之后,钙钛矿相的活性位点也被 硫酸化,此时催化剂的失活由钙钛矿相硫酸化 (直 接失活)和 MgO 相硫酸化 (屏蔽效应)引起,在 MgO 相上的表面硫酸盐被去除后,被覆盖的活性位点再 次可用于催化反应,使活性部分恢复.

通过向载体中掺杂元素还可以提升载体的酸度 从而减少 SO₂ 在载体上的吸附和氧化. Ding 等^[31] 研究了 SO₂ 存在条件下 Ce_{0.5}Zr_{0.5}O₂和 CeO₂ 负载 的 Pd 催化剂 (Pd/CZ 和 Pd/Ce) 对甲烷完全氧化的 催化行为. 抗硫稳定性测试表明, Pd/CZ 在 50 h运 行时间内始终保持较高活性, 而 Pd/Ce 的活性则持 续下降. 这一现象归因于 Pd/CZ 载体的较强酸性能 够选择性地使 SO₂ 与 Ce_{0.5}Zr_{0.5}O₂ 中的 Ce 结合, 优 先形成硫酸铈并积累在载体表面, 进而提高酸性, 减 少 SO₂ 在催化剂上的直接吸附和沉积, 同时减缓硫 酸盐的进一步积累. 而 Pd/Ce 由于酸性较弱和酸位 点较少, 更容易受到 SO₂ 的影响. 此外, 该研究也指 出^[31], 适宜的酸量和酸强度能够避免 SO₂ 在载体上 的进一步沉积,有效阻止体相硫酸盐的形成,同时避免 SO₂ 优先与活性组分相互作用,在一定程度上保护活性相. Lin 等^[20] 通过溶胶-凝胶法将掺杂元素(Si、P、Mg、La和 Zr)引入到 Al₂O₃ 载体中,以调节Pd 基催化剂的表面酸碱性 (图 4(c)). 研究发现,表面碱性位点的增加会促进硫物种在载体上的积累,导致载体硫酸化;而表面酸性的增强则抑制 SO₂ 在载体上的吸附,却会导致 SO₂ 在活性位点上积累,从而引起活性 Pd 物种的硫酸化. 这两种情况均不利于甲烷氧化反应. 相比之下, Zr 掺杂的 Pd/Zr-Al₂O₃ 催化剂表现出适中的表面酸碱度,在含硫环境下能够保留中等量的硫物种,从而表现出优异的抗硫性能.

钙钛矿催化剂中B位阳离子的部分取代也可 以提升酸度,从而减弱 SO,的吸附. Rossetti 等^[32]通 过 Sr 或 Ce 取代 LaMnO3 钙钛矿 B 位阳离子以调 节其抗硫性能,他们发现 Sr 取代的 La₀,Sr₀,MnO₃ 抗硫性最好, 而 La₀, Ce₀, MnO₃的抗中毒能力反而 比未取代的 LaMnO, 样品差. 一方面, Sr 的掺杂迫 使 Mn 处于最高氧化态, 使其酸性增强, 减弱 SO2 与 表面的键合, Sr 取代还可能增加氧空位数量, 使晶 格氧迁移率增加;另一方面,由于其碱性特征,Sr可 以形成稳定的硫酸盐, 捕获部分 SO2, 充当硫防护 剂,从而最大限度地减少活性损失.相比之下,Ce⁴⁺ 的引入导致 B 位阳离子部分还原,即变成酸性较 低的 B 位离子. 此外, 他们还发现添加贵金属后, 0.5%Pt/LaMnO₃抗中毒能力也优于 LaMnO₃,这是 由于 Pt 比活性相更迅速地吸附硫物质并与其反应, 从而保护活性位点.

在负载型过渡金属催化剂的载体中掺杂其他元素也可以改变酸位点数量,抑制 SO₂ 的吸附. Liu 等^[33]向 γ-Al₂O₃ 载体中引入不同含量的 Ni 元素,制备了一系列 Cu-ωNi/γ-Al₂O₃ 催化剂 (ω 为 Ni 含量, ω%= 0%, 5%, 10%),以研究 Ni 在甲烷燃烧中的抗硫增强作用. 他们发现, Ni 的加入显著增强了催化剂的抗硫性能,且随着 Ni 含量的增加,抗硫效果更加显著. 在含 SO₂ 的环境中反应 10 h 后, Cu-10Ni/γ-Al₂O₃ 催化剂的 CH₄转化率仍保持在 96% 以上. 这种抗硫增强效应归因于 Ni 的引入减少了 Lewis 酸位点的数量,而 SO₂ 是 Lewis 碱性分子,因此 SO₂ 在催化剂上的吸附减弱.

2.2.3 酸化处理

酸化处理可以提升贵金属催化剂载体的酸性

从而抑制 SO₂的吸附和进一步积累, Zheng 等^[34] 采用 H₂SO₄ 溶液对 CeZrO_x 载体进行酸化所制得的 Pt/CeZr-S 催化剂与未酸化的 Pt/CeZr 催化剂相比, 其酸强度和总酸量显著增加,对 SO2吸附能力下降 了 86%. Ding 等^[31] 研究了 SO₂ 预处理 (500 ℃下, 在含 261.81 mg·m⁻³ SO₂ (25 ℃, 101.325 kPa) 的空 气中处理 6 h) 对 Ce₀₅Zr₀₅O₂和 CeO₂负载 Pd 催化 剂 (Pd/CZ 和 Pd/Ce) 性能的影响. 他们发现, 经过 SO₂处理的 Pd/CZ 催化剂 (Pd/CZ-100SW-6h) 在甲 烷转化率方面有所提升,并且在含硫环境中仍能保 持较高的甲烷转化率. XPS 和 NH₃-TPD 分析表明, SO₂处理后, Pd/CZ 催化剂的氧空位数量增加, 同时 酸性增强,有效避免了 SO2 的进一步吸附.载体酸 化除了能增强酸性抑制 SO2 吸附以外,还能在一定 程度上促进活性提升, Li 等^[35]使用不同SO₄²⁻含量 的Pt-SO₄²⁻/ZrO₂催化剂进行丙烷燃烧实验,发现 SO4-的添加显著提高了催化活性.这种提升归因于 超强酸位点与 Pt 物种的协同催化作用, 增强了 C—C 键活化的效率. 然而, 这种协同作用受SO4-含 量的影响,过量的SO²⁻会减少 Pt 位点的暴露,从而 抑制催化剂活性.

对非贵金属催化剂进行表面酸化处理可以减弱 活性相与 SO₂ 的接触,从而减轻硫中毒.Wu 等^[36] 采用表面聚合磷酸盐 (SPP) 对 NiO 纳米颗粒 (NiO NPs) 进行修饰,制备了一种耐硫性增强的 NiO 基催 化剂 (NiO-SPP),用于甲烷燃烧.经过通入 SO₂ 的 8 h稳定性测试后,NiO-NPs 的甲烷转化率下降了 50%,而 NiO-SPP 的失活程度则显著较低.对于 NiO NPs 和 NiO-SPP 在稳定性和耐久性测试前后 的表征结果显示, SPP 修饰能够降低活性位点与硫 物种之间的相互作用,同时有效减缓初始硫酸化的 速率,从而增强了催化剂的抗硫性能.

2.2.4 构筑核壳结构

通过设计具有限域效应的载体,可以减少 SO₂ 进入活性位点的机会.例如,采用核壳结构将活性相 包覆在载体中,可以有效抑制活性组分对 SO₂的吸 附. Zhang 等^[21]采用一步合成法将 Pd 团簇嵌入全 硅沸石中所制备的核壳结构 Pd@S-1 催化剂用于甲 烷催化燃烧时表现出优异的耐硫性,并能在无 SO₂ 气氛中逐渐恢复活性.一系列表征结果表明, S-1 壳 层对 SO₂ 起到屏蔽作用,其微孔限域效应阻止了高 温条件下难以分解的大尺寸 PdSO₄ 团簇的生成,如 图 4(d) 所示.这一特性显著降低了 SO₂ 在催化剂表

面的沉积,使其更容易脱附,从而降低 Pd@S-1 催化 剂的再生温度,提升了抗硫性能和使用寿命.此外, 为活性组分构筑惰性壳层阻碍 SO₂ 的进入,同时向 其中引入硫敏感元素作牺牲剂,可以在 SO2 气氛中 为活性组分添加双重保护. Peng 等^[37] 通过简单直接 的自组装策略制备了以 Pd-CeO, 固溶体纳米线 (Pd-CeNW) 为核和多孔 SiO, 为壳的 Pd-CeNW@SiO, 催化剂,并比较其与 Pd-Ce/SiO, 和 Pd@SiO, 的抗硫 性能,在 52.36 mg·m⁻³ SO₂ (25 °C, 101.325 kPa) 环 境中,催化性能遵循 Pd-CeNW@SiO₂ > Pd@SiO₂ > Pd-Ce/SiO, 的顺序. 在 450 ℃下 SO, 吸附的原位 DRIFTS 光谱显示, 在引入 SO₂ 5 min 后, Pd-Ce/SiO₂ 催化剂上出现硫酸钯和硫酸铈物种, Pd@SiO2 催化 剂在引入 SO₂ 30 min 后才有更少的硫酸钯物种生成, 而 Pd-CeNW@SiO2 催化剂上始终未形成任何硫酸 盐. 这三种催化剂上生成硫酸钯物种的速度顺序与 抗硫性能顺序一致, 表明 Pd-CeNW@SiO2 催化剂的 优异 SO2 耐受性归因于多孔 SiO2 壳对 SO2 毒物的 屏蔽作用以及 CeO2 对 Pd 的保护作用.

2.2.5 其他

除了以上4种常见的抗硫策略外,还有一些不 常用的方法也可以提升催化剂对 SO, 的耐受性. 通 过载体与活性组分之间的相互作用调节 SO,在催 化剂上的吸附行为可以减少 SO。与活性位点的接 触. Torralba 等^[38] 通过简单的浸渍煅烧工艺制备了 一种 Pt/ZrO2 催化剂,该催化剂能够在含 SO2 的严 苛环境下保持甲烷氧化反应的稳定运行而不发生失 活. 这是因为 Pt-ZrO₂ 界面形成的 Pt²⁺-Pt⁴⁺和 Pt²⁺-Zr⁴⁺偶极性质的双功能催化位点能够增强 CH₄ 分子 的极化作用,提升 CH₄ 与催化剂表面的碰撞效率, 降低 C—H 键的解离能, 加速吸附 CH₄ 的活化. 而 SO₂ 更倾向于与 ZrO₂ 诱导的高偶极电势 Pt²⁺-Zr⁴⁺位 点发生相互作用,从而保证了 Pt²⁺-Pt⁴⁺偶极位点在 甲烷吸附和氧化中的功能稳定性. 特定的制备方法 可以通过产生优先吸附 SO₂的新相来保护活性位 点. Zhong 等^[39] 通过氧化还原沉淀法 (RP) 和共沉 淀法 (CP) 分别制备了 Mn-Ce 氧化物催化剂 MnCe-RP和 MnCe-CP. 在含 209.44 mg·m⁻³ SO₂ (25 ℃, 101.325 kPa) 的气氛中, MnCe-RP 催化剂的甲烷 转化率仅下降 1.08%, 而 MnCe-CP 催化剂的活性下 降幅度高达 63.53%. MnCe-RP 优异的抗硫性能主 要得益于其表面和体相形成的 K_rMn_sO₁₆, 该物质具 有优异的氧化还原性能和 SO, 吸收能力, 能够将

SO₂氧化成硫化物,从而保护下游催化剂的活性位 点.选用具有特殊性质的材料作为载体,比如通过 对 SO₂ 亲和力较低的载体来抑制 SO₂ 的吸附和进 一步氧化积累,可以减轻活性相的硫中毒.Hu 等^[40] 通过浸渍法合成的 Pt/r-TiO₂ 催化剂在 400 ℃ 下含 523.61 mg·m⁻³ SO₂ (25 ℃, 101.325 kPa) 的环境中进 行 55 h 的甲烷燃烧稳定性测试,仍能保持 92% 以 上的甲烷转化率. DFT 计算、TGA 和原位 DRIFTS 表征证实, r-TiO₂上的 SO₂吸附能极小, 催化剂上不 会发生亚硫酸盐或硫酸盐的沉积, 这使其保持了优 异的耐硫性.

低碳烷烃 VOCs 催化燃烧常用的催化剂抗硫策 略及效果如表 1 所示^[41-46].

Catalyst	Anti-SO ₂ poisoning	Reaction conditions	Activity change	
	strategy		Pristine	Post-optimized
0.33Pt-0.67Pd(0.27)/	Bimetal system	5% CH ₄ +10% O ₂ /N ₂ , 2 618.05 mg \cdot m ⁻³ SO ₂	$(0.82Pd(0)/MnLaAl_{11}O_{19}):$ 100% \rightarrow 90%	100‰→99%
$MnLaAl_{11}O_{19}^{[18]}$		(25 °C, 101.325 kPa)		
Pd/Al ₂ O ₃ ^[19]	Bimetal system	0.05% CH ₄ +8% O ₂ /N ₂ , 26.18 mg \cdot m ⁻³ SO ₂	$(Pd/Al_2O_3): 87\% \rightarrow 10\%$	95%→66%
		(25 °C, 101.325 kPa)		
$0.44PtPd_{2.20}/ZrO_2^{[25]}$	Bimetal system	$2.5\%\ CH_4{+}20\%\ O_2{/}N_2,\ 261.81\ mg{\cdot}m^{^{-3}}\ SO_2$	(0.55Pd/ZrO ₂):	90‰→76%
		(25 °C, 101.325 kPa)	90%→45%	
2Pd/4Pt/15Zr/	F1 (1)	1% CH ₄ +10% O ₂ /6% CO ₂ /N ₂ , 26.18 mg \cdot m ⁻³	(2Pd/4Pt/SBA-15):	88%→60%
SBA-15 ^[29]	Element doping	SO ₂ (25 °C, 101.325 kPa)	55%→30%	
Pd@S-1 ^[21]	Core-shell structure	1% CH ₄ +20% O ₂ /N ₂ , 261.81 mg \cdot m ⁻³ SO ₂	(Pd/S-1): 100%→<10%	100%→60%
		(25 °C, 101.325 kPa)		
Pd-CeNW@SiO ₂ ^[37]	Core-shell structure	1% CH ₄ +21% O_2/N_2 , 52.36 mg·m ⁻³ SO ₂	(Pd-Ce/SiO ₂): 80%→5%	100%→100%
		(25 °C, 101.325 kPa)		
$Pt/Ti_{0.2}AlO_y^{[41]}$	Element doping	0.2% C_3H_8 +5% O_2 /Ar, 52.36 mg·m ⁻³ SO ₂	(Pt/Al ₂ O ₃): 64‰→62%	66%→66%
		(25 °C, 101.325 kPa)		
meso-Na _x MnO _y ^[27]	Element doping	$0.2\% C_3 H_8 \!\!+\! 20\% O_2 \!/\! N_2 \!, 52.36 \ \text{mg} \!\cdot\! \text{m}^{-3} \ \text{SO}_2$	(MnO ₂): 50%→2%	50%→32%
		(25 °C, 101.325 kPa)		
Cu-10Ni/ γ -Al ₂ O ₃ ^[33]	Element doping	$3\% \text{ CH}_4/\text{Air}, 261.81 \text{ mg} \cdot \text{m}^{-3} \text{ SO}_2$	$(Cu/\gamma-Al_2O_3): 95\% \rightarrow 86\%$	100%→96%
		(25 °C, 101.325 kPa)		
$CuO/A_1C_1^{[42]}$	Element doping	$0.06\% \ C_3H_8{+}5\% \ O_2{/}N_2, \ 523.61 \ mg {\cdot}m^{-3} \ SO_2$	(CuO/Al ₂ O ₃):	100%→95.78%
		(25 °C, 101.325 kPa)	100‰→93.65%	
Co ₃ O ₄ -L ^[43]	Sulfur-resistant	$0.1\% \text{ C}_3\text{H}_8\text{+Air}, 52.36 \text{ mg} \cdot \text{m}^{-3} \text{ SO}_2$	(Co ₃ O ₄ -bulk):	100%→75%
	support	(25 °C, 101.325 kPa)	100%→80%	

表1 代表性贵金属及非贵金属催化剂的抗 SO ₂ 中毒	策略及效果
--	-------

Table 1 Anti-SO₂ poisoning strategies and effects of representative noble and non-noble metal catalysts

3 结论及展望

近年来,研究人员在提升低碳烷烃燃烧催化剂 抗硫性能方面取得了显著进展,采用的策略主要有: (1)构建双贵金属催化体系以改变主活性相的电子 结构,增强其给电子能力抑制 SO₂ 吸附或者维持高 氧化态活性相不被 SO₂ 还原,此外,添加的第二种 贵金属元素还可以优先吸附 SO₂,从而减缓其与主 活性相作用;(2)掺杂其他元素直接作牺牲剂与 SO₂ 反应或者提升催化剂酸性,从而减弱 SO₂ 在活性相 上的吸附; (3) 酸化处理提升催化剂酸性, 抑制 SO₂ 的吸附; (4) 构筑核壳结构阻碍 SO₂ 进入活性位点.

目前,贵金属催化剂由于其优异的催化活性而 在实际工业中广泛应用,但对硫物质的高度敏感是 其进一步推广的限制性因素之一.向载体中掺入牺 牲剂吸附 SO₂ 只能延缓贵金属被毒害的速度,可持 续性差;酸化处理可能由于硫酸盐的存在而减少贵 金属活性位点的暴露,抑制催化活性.相比之下,通 过添加其他贵金属改变主活性相的配位环境却可以 从源头抑制 SO₂ 与活性相的作用, 实现抗硫性和活性的提升; 构建核壳结构在阻碍 SO₂ 与活性位点接触的同时, 促进反应进行, 不仅具有优异的抗硫效果, 还能提升催化活性. 因此, 对于贵金属催化剂, 构建双贵金属催化体系或构筑核壳结构催化剂提升抗硫性更具应用前景. 复合金属氧化物催化剂的活性相十分分散, 宜通过掺杂元素来提升酸性, 抑制 SO₂的吸附, 减轻毒害作用.

尽管目前在催化剂硫中毒机制的理解以及抗硫 策略的开发和优化方面已取得显著进展,但仍然存 在许多需要解决的问题.在实际反应环境中,往往同 时存在水蒸气、含氯化合物和含硫化合物等多种痕 量污染物,因此亟需开发兼具高活性和多种毒物抗 性的催化剂.此外,目前的研究主要集中在处理单一 污染物,而工业排放的废气通常是多种污染物的混 合体.因此,加强对混合污染物处理的研究显得尤为 重要,例如探索吸附浓缩与催化氧化等多种技术联 用的处理方式,以更高效地消除污染物.

参考文献:

- [1] Dong F, Han W G, Han W L, *et al.* Assembling coreshell SiO₂@Ni_aCo_bO_x nanotube decorated by hierarchical NiCo-Phyllisilicate ultrathin nanosheets for highly efficient catalytic combustion of VOCs[J]. *Appl Catal B-Environ*, 2022, **315**: 121524.
- [2] Peng Q, Han W L, Han W G, *et al.* Tailored Pt/Ni_aCo_bAlO_x catalysts derived from LDH structure for efficient catalytic combustion of propane[J]. *Chem Eng J*, 2024, **500**: 157181.
- [3] Wu S X, Wu S L, Dong F, *et al.* Engineering a CoMnO_x nanocube core catalyst through epitaxial growth of CoAlO_x hydrotalcite shell nanosheets for efficient elimination of propane[J]. *J Mater Chem A*, 2024, **12**(26): 16210–16226.
- [4] 吴冬霞, 程行, 胡江亮, 等. VOCs 燃烧催化剂耐硫性新进展 [J]. 洁净煤技术, 2022, 28(2): 67-76. [Wu D X, Cheng H, Hu J L, et al. New progress on sulfur resistance of VOCs combustion catalysts[J]. Clean Coal Technol, 2022, 28(2): 67-76.]
- [5] 耿俊,柯权力,周文茜,等.催化燃烧催化剂抗硫性的研究进展[J].燃料化学学报,2022,50(5):564-575.
 [Geng J, Ke Q L, Zhou W X, *et al.* Research progress in the sulfur resistance of catalytic combustion catalysts[J]. *J Fuel Chem Technol*, 2022, 50(5):564-575.]

- [6] 杨丹, 董芳, 张继义, 等. VOCs 催化燃烧催化剂抗 SO₂ 中毒研究进展 [J]. 分子催化, 2024, **38**(3): 284-296.
 [Yang D, Dong F, Zhang J Y, *et al.* Research progress on anti-SO₂ poisoning catalysts for VOCs catalytic combustion[J]. *J Mol Catal (China)*, 2024, **38**(3): 284-296.]
- [7] He C, Cheng J, Zhang X, et al. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources[J]. Chem Rev, 2019, 119(7): 4471-4568.
- [8] Yuan B, Zhu T, Nie B S, *et al.* The effect of water vapour and sulfur on the methane combustion reaction on Pd₁₃ clusters: Insights from a first principles study[J]. *J Environ Chem Eng*, 2024, **12**(5): 113860.
- [9] Monai M, Montini T, Melchionna M, et al. The effect of sulfur dioxide on the activity of hierarchical Pdbased catalysts in methane combustion[J]. Appl Catal B-Environ, 2017, 202: 72–83.
- [10] Smirnov M Y, Kalinkin A V, Pashis A V, et al. Interaction of SO₂ with Pt model supported catalysts studied by XPS[J]. J Phys Chem C, 2014, 118(38): 22120–22135.
- [11] Yang Z, Liu J, Zhang L, et al. Catalytic combustion of low-concentration coal bed methane over CuO/γ-Al₂O₃ catalyst: Effect of SO₂[J]. RSC Adv, 2014, 4(74): 39394– 39399.
- [12] Lv C W, Hu M J, Yuan T H, *et al.* Dopant-driven tuning of toluene oxidation and sulfur resistance at the B-site of $LaCo_{1-x}M_xO_3$ (M = Fe, Cr, Cu) perovskites[J]. *Catal Sci Technol*, 2022, **12**(11): 3670–3684.
- [13] Martinovic F, Tran Q N, Deorsola F A, *et al.* SO₂ deactivation mechanism of NO oxidation and regeneration of the LaCoO₃ perovskite[J]. *Catal Sci Technol*, 2020, 10(7): 2193–2202.
- [14] Royer S, Van Neste A, Davidson R, *et al.* Methane oxidation over nanocrystalline LaCo_{1-x}Fe_xO₃: Resistance to SO₂ poisoning[J]. *Ind Eng Chem Res*, 2004, 43(18): 5670–5680.
- [15] Arevalo R L, Aspera S M, Nakanishi H. Sulfation of a PdO(101) methane oxidation catalyst: Mechanism revealed by first principles calculations[J]. *Catal Sci Technol*, 2019, 9(1): 232–240.
- [16] Xie S H, Deng J G, Zang S M, et al. Au-Pd/3DOM
 Co₃O₄: Highly active and stable nanocatalysts for toluene oxidation[J]. J Catal, 2015, 322: 38–48.
- [17] Ji J B, Zhang C Y, Yang X F, *et al.* Pt-stabilized electron-rich Ir structures for low temperature methane combustion with enhanced sulfur-resistance[J]. *Chem*

Eng J, 2023, **466**: 143044.

- [18] Yashnik S A, Chesalov Y A, Ishchenko A V, et al. Effect of Pt addition on sulfur dioxide and water vapor tolerance of Pd-Mn-hexaaluminate catalysts for hightemperature oxidation of methane[J]. Appl Catal B-Environ, 2017, 204: 89–106.
- [19] Sadokhina N, Smedler G, Nylén U, et al. Deceleration of SO₂ poisoning on PtPd/Al₂O₃ catalyst during complete methane oxidation[J]. Appl Catal B-Environ, 2018, 236: 384–395.
- [20] Lin J, Chen X H, Zheng Y, et al. Sulfur-resistant methane combustion invoked by surface property regulation on palladium-based catalysts[J]. Appl Surf Sci, 2022, 587: 152835.
- [21] Zhang Z S, Sun L W, Hu X F, et al. Anti-sintering Pd@silicalite-1 for methane combustion: Effects of the moisture and SO₂[J]. Appl Surf Sci, 2019, 494: 1044–1054.
- [22] Ohtsuka H. The oxidation of methane at low temperatures over zirconia-supported Pd, Ir and Pt catalysts and deactivation by sulfur poisoning[J]. *Catal Lett*, 2011, 141(3): 413–419.
- [23] Ohtsuka H. Effects of Ru or Rh addition on the activity and sulfur tolerance of Pt/ZrO₂ for the oxidation of methane at low temperatures[J]. *Catal Lett*, 2013, 143(10): 1043-1050.
- [24] Corro G, Cano C, Fierro J L G. A study of Pt-Pd/γ-Al₂O₃ catalysts for methane oxidation resistant to deactivation by sulfur poisoning[J]. *J Mol Catal A-Chem*, 2010, 315(1): 35–42.
- [25] Zhang X F, Liu Y X, Deng J G, et al. Catalytic performance and SO₂ resistance of zirconia-supported platinum-palladium bimetallic nanoparticles for methane combustion[J]. Catal Today, 2022, 402: 138–148.
- [26] Wilburn M S, Epling W S. Sulfur deactivation and regeneration of mono- and bimetallic Pd-Pt methane oxidation catalysts[J]. *Appl Catal B-Environ*, 2017, 206: 589–598.
- [27] Hao X Q, Deng J G, Liu Y X, et al. Mesoporous Na_xMnO_y-supported platinum–cobalt bimetallic singleatom catalysts with good sulfur dioxide tolerance in propane oxidation[J]. ACS Sustain Chem Eng, 2022, 10(26): 8326–8341.
- [28] Venezia A M, Di Carlo G, Pantaleo G, et al. Oxidation of CH₄ over Pd supported on TiO₂-doped SiO₂: Effect of Ti(IV) loading and influence of SO₂[J]. Appl Catal B-Environ, 2009, 88(3/4): 430–437.

- [29] Caravaggio G, Nossova L, Turnbull M. Effect of zirconia on Pd–Pt supported SBA-15 catalysts for the oxidation of methane[J]. *Catalysts*, 2023, 13(6): 926.
- [30] Rosso I, Garrone E, Geobaldo F, *et al.* Sulphur poisoning of LaMn_{1-x}Mg_xO₃·yMgO catalysts for methane combustion[J]. *Appl Catal B-Environ*, 2001, 34(1): 29–41.
- [31] Ding Y, Wang S, Zhang L, *et al.* Investigation of supported palladium catalysts for combustion of methane: The activation effect caused by SO₂[J]. *Chem Eng J*, 2020, **382**: 122969.
- [32] Rossetti I, Buchneva O, Biffi C, *et al.* Effect of sulphur poisoning on perovskite catalysts prepared by flame-pyrolysis[J]. *Appl Catal B-Environ*, 2009, **89**(3/4): 383–390.
- [33] 刘建军,杨仲卿,张力.Ni的引入对 Cu/y-Al₂O₃ 催化 剂上含硫低浓度甲烷燃烧特性的影响 [J]. 燃料化学 学报, 2014, 42(10): 1253-1258. [Liu J J, Yang Z Q, Zhang L. Effect of Ni addition on the catalytic performance of Cu/y-Al₂O₃ in the combustion of lean methane containing SO₂[J]. J Fuel Chem Technol, 2014, 42(10): 1253-1258.]
- Zheng Z H, Wu S P, Huang Z, *et al.* Insights into enhancing SO₂ tolerance for catalytic combustion of toluene over sulfated CeZrO_x supported platinum catalysts[J]. *Colloid Surface A*, 2023, 669: 131539.
- [35] Li D D, Leng X Y, Wang X F, et al. Unraveling the promoting roles of sulfate groups on propane combustion over Pt-SO₄²⁻/ZrO₂ catalysts[J]. J Catal, 2022, 407: 322–332.
- [36] Wu J Z, Du K M, Che J W, et al. Deactivation mechanism study for sulfur-tolerance enhanced NiO nanocatalysts of lean methane oxidation[J]. J Phys Chem C, 2021, 125(4): 2485–2491.
- [37] Peng H G, Rao C, Zhang N, et al. Confined ultrathin Pd-Ce nanowires with outstanding moisture and SO₂ toler-ance in methane combustion[J]. Angew Chem Int Edit, 2018, 57(29): 8953–8957.
- [38] Torralba R, Corro G, Rosales F, *et al.* Total oxidation of methane over sulfur poisoning resistant Pt/ZrO₂ catalyst: Effect of Pt²⁺-Pt⁴⁺ and Pt²⁺-Zr⁴⁺ dipoles at metalsupport interface[J]. *Catal Lett*, 2021, **151**(6): 1592–1603.
- [39] Zhong L, Fang Q, Li X, et al. SO₂ resistance of Mn-Ce catalysts for lean methane combustion: Effect of the preparation method[J]. Catal Lett, 2019, 149(12): 3268– 3278.

- [40] Hu B, Liu K J, Shen X, et al. Crystalline phase-modulated PtO_x nanoparticles exhibit superior methane combustion performance and sulfur poisoning resistance: Multi-interaction regulation[J]. J Environ Chem Eng, 2024, 12(4): 113140.
- [41] Liu L Q, Han W L, Dong F, et al. Construction of framework confined ordered mesoporous Pt/Ti_xAlO_y catalysts and applied for the catalytic oxidation of propane[J]. *Microporous Mesoporous Mater*, 2022, 341: 112111.
- [42] Li F, Zhao B, Tan Y F, et al. Preparation of Al₂O₃-CeO₂ by hydrothermal method supporting copper oxide for the catalytic oxidation of CO and C₃H₈[J]. Ind Eng Chem Res, 2022, 61(14): 4739–4751.
- [43] Dang F, Jiang Z Y, Wang Y D, et al. Enhanced light alkane oxidation under impurity-containing conditions by low-coordinated Co—O structures boosting C—H bond activation[J]. ACS Catal, 2024, 14(18): 14031-

14042.

- [44] 包鹏飞,周小纳,韩维亮,等. VOCs 催化燃烧整体式催化剂及涂层材料研究进展 [J]. 分子催化, 2024, 38(3): 254-262. [Bao P F, Zhou X N, Han W L, et al. Research progress of VOCs catalytic combustion monolithic catalyst and coating materials[J]. J Mol Catal (China), 2024, 38(3): 254-262.]
- [45] 郝广源, 井宇. V-Ce/TiO₂ 脱硝催化剂的 SO₂ 中毒机 理研究 [J]. 分子催化, 2023, 37(5): 428-438. [Hao G Y, Jing Y. Study of SO₂ poisoning mechanism of V-Ce/TiO₂ catalyst for NH₃-SCR[J]. *J Mol Catal (China)*, 2023, 37(5): 428-438.]
- [46] 喻瑞,朱繁,史光,等. Nb 对 MnTiO_x 在烧结烟气的 NH₃-SCR 低温催化活性及抗钾毒化的促进作用 [J]. 分子催化, 2024, **38**(5): 427-436. [Yu R, Zhu F, Shi G, *et al.* Promotion effect of Nb-modification of MnTiO_x catalysts in low-temperature NH₃-SCR reactivity and Kresistant[J]. *J Mol Catal (China)*, 2024, **38**(5): 427-436.]

Current Research Status and Progress of SO₂ Resistant Catalysts for Catalytic Combustion of Low-carbon Alkane VOCs

PENG Qian^{1,2}, DONG Fang², HAN Weiliang², HAN Weigao², TANG Zhicheng^{2*}, ZHOU Zhifang^{1*}

(1. School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China; 2. National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China)

Abstract: Low carbon alkanes have stable molecular structures and high energy barriers for breaking C—H bonds, making them one of the most difficult components to degrade in VOCs. Catalytic combustion technology has been widely used in the treatment of VOCs because of its low ignition temperature, wide range of application, no secondary pollution and other characteristics. At present, catalytic combustion catalysts for low carbon alkane VOCs include two categories: noble metal catalysts and non- noble metal catalysts. However, in practical industrial applications, sulfur-containing species usually compete with VOCs molecules for adsorption onto the catalyst active sites, resulting in deactivation of the active center. In some cases, the sulfur-containing species may even react with the active components or supports to generate sulfates, resulting in irreversible poisoning. In this paper, the mechanism of sulfur poisoning and deactivation on the catalyst surface was discussed in depth, and the main anti-sulfur poisoning strategies for noble and non-noble metal catalysts for catalytic combustion of low-carbon alkane VOCs were summarized, including the construction of double noble metal catalytic system, elements doping, acidification treatment, and the construction of core-shell structure catalysts and so on. Finally, the most promising anti-sulfur strategies for application were proposed.

Key words: low-carbon alkane VOCs; catalytic combustion; sulfur resistance; catalyst; core-shell structure