文章编号: 1001-3555(2024)04-0386-13

MOFs 材料在 CO_x 加氢制醇反应中的研究进展

王诗怡^{1,2},罗明生^{1,2*},张子扬^{1,2}

(1.北京石油化工学院新材料与化工学院,北京102617;2.燃料清洁化

及高效催化减排技术北京市重点实验室,北京102617)

摘要: 传统燃料燃烧过程中排放的 CO₂/CO 会导致环境的日益恶化, 通过热催化将 CO₂/CO 还原成高附加值的醇类 是应对和解决环境恶化问题的有效途径之一. 然而, 要得到收率和选择性高的产物, 需要设计高效的催化剂来提高 CO₂/CO 加氢的催化活性. MOFs 材料由于其独特的物理化学性质和高度可调性等特点, 在加氢催化领域受到了人 们的广泛关注. 因此, 我们系统地阐述了 MOFs 材料在碳氧化物 CO_x 加氢制醇反应中的研究进展, 总结了碳氧化物 加氢制醇的部分反应机理, 同时对 MOFs 材料应用于 CO_x 加氢反应的性能表现和合成方法进行了初步探讨. 关键词: 合成气转化; CO, 加氢; 低碳醇; MOFs

中图分类号: O643.32 文献标志码: A

DOI: 10.16084/j.issn1001-3555.2024.04.009

近年来,大气中二氧化碳 (CO₂)的排放量过高 导致了环境的日益恶化,引起了温室效应并导致全 球气候发生变化.然而,在碳氢化合物燃烧过程中, 除了 CO₂ 以外,有毒气体 CO 的生成也引起了人们 的关注和忧虑.因此,C1 化学的碳捕集与利用 (CCU) 受到人们的广泛关注^[1],利用 CO/CO₂ (CO_x, 碳氧化物)加氢生产高附加值的醇类成为了一种安 全便捷的 CCU 路线^[2].这一技术路径旨在实现对煤 炭等富含碳资源和 CO₂ 等温室气体的高效利用,从 而推动我国实现碳中和目标和能源可持续发展.

金属有机骨架材料 (MOFs) 是由有机配体和金 属阳离子或团簇之间通过配位键自组装而成的具有 分子大小孔洞的多孔晶体材料.由于其独特的性质, 被广泛应用于催化、电化学、药物传递等各种前沿 领域.在构建 CO_x加氢制醇的催化剂时, MOFs 材料 能够作为一个理想平台在温和条件下进行反应.首 先, MOFs 材料具有丰富的孔结构和高比表面积,能 够有效地提高活性位点的分散性,并促进对 H₂和 CO₂ 的吸附活化,这有利于在低温下维持 CO_x加氢 的催化活性;其次, MOFs 的金属节点可以提供大量 的 Lewis 酸或 Brønsted 酸性位点,有助于激活 CO_x 或维持关键中间体的稳定;此外,不同的分离催化 位点可以被纳入具有强金属-载体相互作用 (SMSI) 的 MOFs 中,通过合理设计和功能化修饰 MOFs 的结构,可以有针对性地调整配位环境以控制 CO_x 加氢反应;最后,利用孔约束效应可以改善催化 活性位点的分布,限制大分子进入,从而提升催化 活性并增强其在 CO_x加氢过程中的稳定性^[3].在 CO_x加氢催化体系中,研究较多的常见 MOFs 材 料有 ZIFs 系列 (ZIF-8、ZIF-67)、UiO 系列 (UiO-66、 UiO-67)、MIL 系列 (MIL-53、MIL-101)、Cu 基 MOFs (HKUST-1)等^[4-5].

近年来, MOFs 在 CO_x 加氢催化方面取得了一 定进展, 但对于 CO_x 加氢催化的活性位点的设计、 催化性能、机理认识等方面的研究还处于经验积累 的上升阶段. 此外, 关于 MOFs 基催化剂在 CO_x 选 择性加氢反应的研究综述也鲜少涉及. 因此, 我们介 绍了 MOFs 材料衍生催化剂在 CO_x 加氢制醇反应 中的研究进展, 比较了他们的优缺点, 并对 MOFs 材料在上述应用中的前景进行展望.

$1 CO_x$ 加氢制醇的反应机理

在 CO_x 加氢的催化剂研究中, 深入研究醇类的 生成机制, 全面了解反应机理有利于针对性地改进 催化剂结构和性能, 这为提高催化剂的活性、目标 产物的选择性和稳定性奠定了坚实的理论基础. CO_x 加氢合成醇的反应网络非常复杂, 包含多个平 行和串联反应过程, 除了目标产物甲醇和低碳醇之 外, 还会发生多种类型的平行副反应, 如甲烷、C₂₊ 烃类等^[6]. 其中, 主要过程的热力学数据如表 1 所示.

综述

收稿日期: 2024-02-26;修回日期: 2024-04-25.

作者简介: 王诗怡 (1998-), 女, 硕士研究生, 主要从事合成气转换催化材料研究, E-mail: 1057460408@qq.com(Wang Shi-yi (1998-), female, master degree candidate, mainly engaged in the research of catalytic material for synthesis gas conversion, E-mail: 1057460408@qq.com).

^{*} 通信联系人, E-mail: luoms9297@163.com

Table 1 Important thermodynamic data for CO_2 hydrogenation process								
Process		Reactio	n	$\Delta G_{298}^{\theta} / (\text{kJ·mol}^{-1})$	$\Delta H_{298}^{\theta} / (\text{kJ} \cdot \text{mol}^{-1})$			
Mathanal arm	$\rm CO + 2H_2$	\leftrightarrow	CH ₃ OH	-25.1	-90.5			
Methanol Syn.	$\rm CO_2 + 3H_2$	\leftrightarrow	$\rm CH_3OH + H_2O$	3.5	-49.3			
Ethanol syn.	$2\text{CO} + 4\text{H}_2$	\leftrightarrow	$C_2H_5OH + H_2O$	-221.1	-253.6			
	$2\text{CO}_2 + 6\text{H}_2$	\leftrightarrow	$\mathrm{C_{2}H_{5}OH}+\mathrm{3H_{2}O}$	-32.4	-86.7			
Methanation	$\rm CO + 3H_2$	\leftrightarrow	$\mathrm{CH}_4 + \mathrm{H}_2\mathrm{O}$	-141.9	-205.8			
	$\mathrm{CO}_2 + 4\mathrm{H}_2$	\leftrightarrow	$CH_4 + 2H_2O$	-113.5	-165.0			
WGS	$\rm CO + H_2O$	\leftrightarrow	$\rm CO_2 + H_2$	-28.6	-41.1			
RWGS	$\rm CO_2 + H_2$	\leftrightarrow	$\rm CO + H_2O$	28.6	41.1			

主 1	COICO	加与过程由重要的执力学数据	L
衣工	U_{U}	加刭过住中里女的众力子奴伍	

Table 1 Important thermodynamic data for CO/CO₂ hydrogenation process^[6]

除了 RWGS 反应外,大多数 CO_x 加氢反应路 线都是在低温下放热反应^[7],表明低温有助于提高 CO/CO₂ 的平衡转化率.然而,影响 CO₂ 加氢制醇的 一个关键挑战是该反应的热力学限制.一般来说,较 低的反应温度有利于通过 CO₂ 加氢选择性地生成 R一OH. 但是, CO₂ 的活化却要足够高的温度.另一 方面,与 CO₂ 加氢相比,CO 加氢生成乙醇 ΔG 的绝 对值要大得多,表明热力学上 CO₂ 加氢生成乙醇更 为困难.在醇合成过程之前,将原料气中的 CO₂ 部 分转化为 CO 是解决热力学限制挑战的一条很有前 途的路径,因为使用 CO 的甲醇平衡产率明显高于 使用 CO₂ 的^[8].(CO+CO₂)混合物在反应中可以在相 对较低的温度和明显较高的压力条件下转化为 甲醇.

Guo 等^[9] 通过热力学分析系统考查了 CO 和 CO,混合物的进料组成对甲醇总碳基平衡产率以 及CO和CO,转化的影响.WGS或RWGS反应作 为连接 CO 和 CO2 的通信容器, 对平衡反应混合物 的组成(即 CO 和 CO2的相对平衡转化)有重要影 响. 甲醇的总碳基平衡产率几乎随进料 CO₂/(CO+ CO₂) 摩尔比的增加而线性降低. 也就是说, 反应混 合物中 CO 含量越高, 在热力学上甲醇总碳基平衡 产率越高.此外,随着反应温度的降低和/或反应压 力的增加,甲醇的总碳基平衡产率显著增加.这表 明,对于 CO₂加氢加入部分的 CO 对反应有促进作 用. He 等^[10]利用 Aspen plus 对 CO₂和 CO 共进料 加氢制乙醇进行热力学研究,分析 CO/(CO+CO₂) 比 对 CO,转化率和乙醇选择性的影响,发现在较高的 温度和较低的压力下, CO2和 CO共进料促进了乙 醇的合成. 然而, 过高的 CO/(CO+CO₂) 比会抑制 CO₂的转化. 研究发现, 在 250~300 ℃ 和 3~4 MPa 的条件下, CO/(CO+CO₂) 为 0.1~0.3 时, 可以获得较 高的反应速率和平衡速率. Chen 等则进一步发现去 除 CO₂/CO 加氢中的副产物 H₂O, 在热力学上能进 一步促进乙醇的形成.

1.1 CO/CO₂加氢制甲醇的机理

在 CO, 加氢制甲醇过程中, 涉及了多种反应中 间体和基元反应步骤,使得相关的反应机理变得复 杂且多样,主要集中于2种中间体的讨论上,如图1 所示,分别为甲酸盐中间体 (HCOO*) 和羧基中间 体 (COOH*), 目前的研究趋势大多倾向于 HCOO* 作为主要中间体^[11-12], CO₂先与表面吸附的 H*生 成 HCOO*, HCOO*氢化生成 H₂COO*, 随后发生解 离生成 H₂CO*, H₂CO*经过进一步加氢生成 H₃CO*, 然后 H₃CO*加氢生成甲醇,该机制得到了 DFT 计 算和实验证据的支持^[13-14]. 以羧基 (COOH*) 中间体 为主要中间体的 RWGS+CO- 加氢理论^[15]则是以 COOH*为"中转站"而将 CO2转化为 CO 的 RWGS 反应,然后,HCO*、H2CO*和H3CO*中间体逐步加 氢生成甲醇,这一过程有效地解释了 CO2 加氢产生 CO副产物的机制.CO加氢生成甲醇则是和CO2 的 RWGS+CO-加氢理论类似, 只是少了 CO2转化 成 CO 这一步骤. 研究表明, 催化剂中活性金属的分 散度、平均粒径、金属-金属相互作用及金属和载体 的相互作用等各种因素对反应的转化率、目标产物 的选择性和收率有显著影响.对不同体系的基本反 应动力学进行彻底的分子水平分析是有效指导催化 剂设计策略的必要条件.

1.2 CO/CO₂加氢制高级醇的机理

自合成气制高级醇 (C2+OH, HA) 发展以来, 人

图 1 CO₂加氢合成甲醇的反应机理^[16] Fig.1 Reaction mechanisms for methanol synthesis from CO₂ hydrogenation^[16]

们提出了各种关于潜在反应机制的理论. 在高级醇 的合成中,可能采用一种或多种反应路径,包括 F-T 合成和甲醇合成的部分特征,即解离吸附和非解离 吸附的活性位点. 低碳醇的生成主要包括以下几个 关键步骤: CO 和 H₂ 的解离、C—C 偶联、CO 插入 以及含氧中间体的加氢等^[17-19], 如图 2 所示. 在 HAS 的具体路径中, CO 发生部分解离吸附 形成表面 C, 然后表面 C 加氢形成被吸附的*CH_x, 通过*CH_x 加成发生烷基碳链的生长, 从而形成烷基 种*C_nH_z. 同时, 通过非解离吸附 CO*分子插入到金 属位点和烷基之间, 生成酰基中间体 (C_nH_zCO*), 进 一步加氢生成高级醇. 或者, 吸附的 CO*分子可以

Fig.2 Hydrocarbon and alcohol formation through the CO insertion pathway^[20]

部分氢化生成甲酰基 (CHO*), 然后插入烷基之中, 通过逐步加氢生成高级醇^[19]. 合成气生成高级醇 的反应机理表明, C₂₊醇的生成与 C₂₊烃的生成存 在竞争关系. 只有同时具有较强的链生长能力和较 高的 CO*插入能力的催化剂才能提高高级醇的选 择性^[20-22]. 因此, 要提高催化剂活性并且降低产物中 甲醇选择性, 关键在于增加催化剂表面的上双活性 中心的数量, 并实现 2 类活性中心的含量达到一定 的平衡. 双活性中心的解离或 2 类活性中心数量的 不平衡都可能导致催化剂性能下降. 在纳米甚至原 子尺度上构建高活性、稳定的双活性位点, 并对其 功能和瞬态机制进行研究, 是目前关注的研究热点.

CO₂加氢生成低碳醇反应的机理研究主要基于 CO 介导的途径 (HAS) 进行的,如图 3 所示.这一机理最初是由 Kusama 等^[23-26]使用 Rh-Fe/SiO₂ 催化剂提出的.具体来说,这一机制包括以下几个步骤,如图 3 所示: (1) 通过 RWGS 反应将 CO₂转化成 CO; (2) CO 解离吸附形成*C_xH_y,CO*; (3) C_xH_yCO*加氢 然后生成所需的高级醇 (如 C_xH_yCO*; (3) C_xH_yCO*加氢 然后生成所需的高级醇 (如 C_xH_yCO+1).另一种观 点则是由甲氧基 (CH₃O*) 介导,最初由 He 等^[25]使用 Pt/Co₃O₄ 催化剂提出.在这个机理中,水解离产生的*H 可以质子化产生甲醇,然后甲醇解离形成*CH₃、*OH 和*H, *CH₃进一步与 CO 耦合形成*CH₃CO, 再进一步的氢化产生乙醇.

不同的反应机理之间也存在内在的联系,例如 都需要平衡非解离吸附和解离吸附之间的关系等. 目前,对于 CO_x混合加氢制醇的机理研究,大多是 先将 CO+CO₂ 中的 CO₂ 通过 RWGS 反应转化成 CO, 再根据 CO 加氢制醇的机理进行展开. Guo 等^[9] 通过热力学研究发现在 CO₂ 中加入部分 CO 对反 应有促进作用,且 CO 含量越高,甲醇总碳基平衡产 率越高.但 Wang 等^[14]则发现将 CO₂+CO 进行加氢 反应时, CO 和 CO₂ 在催化剂活性位点的竞争吸附 导致 2 个加氢反应相互抑制.因此在未来的研究中, 整合不同机理中的相关步骤,制备具有双活性位点 的催化剂,对于增加反应中间体的利用效率,提高 CO_x转化率、醇类选择性和收率至关重要.

2 MOFs 基 CO_x 加氢催化剂的合成

作为一种用途广泛的超多孔纳米材料, MOFs 的 合成策略得到了很好地发展, 其孔径、形状、尺寸和 化学环境都可以进行精细调控. 理论上, 不仅可以合 理地设计其活性位点, 还可以精准设计其反应环境. 一方面, MOFs 可用作支撑材料, 通过稳定过渡态、 定向分子或引入额外的活性组分来参与催化反应或 者提供物理空间来封装活性组分, 并构建化学反应 的密闭空间, 从而有效提高活性. 另一方面, 利用 MOFs 材料作为硬模板, 在高温煅烧处理过程中制 备各种金属或金属氧化物纳米材料. 在这种情况中, 框架内的高密度金属作为金属源, 有机连接体的存 在将保护生成的纳米颗粒生长, 尤其在高温下表现 良好的稳定性.

2.1 MOFs 材料作为载体

在直接将金属位点作为催化位点时, 配位缺陷 位点容易在催化过程中堵塞, 导致催化效率显著降 低.因此, 将 MOFs 材料作为载体成为了有效解决 的方法之一, 其合成方法可以分为 3 种: (1) 利用后 修饰法改性引入活性组分, MOFs 的后修饰方法包 括通过有机连接体中剩余的配位引入活性位点、利 用配位不饱和金属节点接枝活性位点、用催化基团 修饰有机配体; (2) 活性组分通过浸渍负载到 MOFs

Fig.3 Hydrocarbon and alcohol formation through the CO₂ insertion pathway^[26]

的孔隙中;(3)将纳米催化剂前驱体或预先制备的金属纳米粒子团加到 MOFs 制备体系中,从而将活性组分包封在 MOFs 空腔中.

改性 MOFs 金属节点是构建 CO, 加氢催化位 点的一种非常有价值的方法. MOFs 的二级构建单 元 (SBUs) 中的金属-簇的合成后修饰可以通过使#3-OH 或µ2-OH 去质子结合其他活性中心来引入活性 金属位点,且 MOFs 中的有机连接可以通过 PSM 被过渡金属离子功能化 (图 4). An 等^[27] 以 2,2'-联吡 啶-5,5'-二羧酸 (bpycd) 为有机配体, 用 Zr₆(µ₃-O)₄(µ-OH)₄SBUs 制备了 UiO-bpy(bpy=2,2'-联吡啶)MOFs, 并将其作为 Cu/ZnO, 催化剂的载体. UiO-bpy 具有 许多配位缺陷,将Cu²⁺离子配位在MOFs中二吡啶 (bpy) 位点上, 而 ZnEt, 与 SBUs 上的µ3-OH 位点反 应,引入 Zn²⁺离子. 通过原位还原合成金属化 UiObpy, 在 250 °C、4.0 MPa、H₂/CO₂=3 条件下 ZnEt₂ 质子分解生成超小的 Cu/ZnO_x 纳米颗粒 (<1 nm). Yaghi 等^[28] 开发了一种新的合成工艺, 将预合成的 Cu 纳米粒子加入到含有 MOFs 前驱体的溶液中, 成 功实现了包封 18 nm 的 Cu 纳米晶体 (NC) 的单晶 Cu@UiO-66,并将其应用于 CO2 加氢制甲醇. 作者

post-synthetically metallated UiO-bpy^[27]

还观察到金属前驱体的选择对包封过程有重大影响.使用 ZrOCl₂·8H₂O和 ZrCl₄ 作为金属前驱体会导致 Cu NCs 的溶解,而只有使用 Zr(OPr")₄ 作为前驱体才能成功将单个 Cu 纳米晶包封到 UiO-66 内.此外,不同 SBUs 的 MOFs 材料如 UiO-66、MIL-101(Cr)和 ZIF-8(Zn),对 Cu 基催化剂的支撑作用也会产生不同的影响.

然而,由于只有少数的 MOFs 材料具有可配位 的不饱和位点,将活性组分包封在 MOFs 空腔中则 对被封装的分子有较高的要求,且 MOFs 框架结构 也可能面临坍塌的风险.因此,通常情况下,广泛采 用浸渍法制备负载型催化剂.以Yu等^[29]为例,通过 热溶剂法制备了一系列 UiO-MOFs(UiO-66、UiO-67 和 Ce-UiO-66),然后通过氯化铑和硝酸锰的混合 溶解共浸渍,成功获得了具有良好催化性能的 RnMn@UiO-MOFs.Tshuma等^[30]以ZIF-8为锌源, 采用"酸蚀-自组装"方法合成了 CuZn 双金属修饰 的 MOFs.该催化剂不仅解决了 MOFs 材料浸渍法 有效组分负载低的问题,而且制备出粒径更小的 Cu/ZnO 催化剂.与传统的共沉淀法相比,金属分散 更均匀,并保留了一定的 MOFs 前驱体形貌.

2.2 MOFs 材料作为前驱体

MOFs 直接作为催化剂在高温高压反应条件下 的稳定性很低,特别是当它们遇到过渡金属 NPs 时, 极大地阻碍了它们在恶劣条件下的实际应用.例如, Yaghi 等^[28] 制备的 Cu@UiO-66 催化剂, 在 175 ℃ 条件下,2h后催化剂失活下降 50% 以上,稳定转化 率低于 2%. 这个缺陷启发了研究者开发具有 MOFs 类似结构的高稳定性和活性催化剂.目前,一种很有 前景的策略是通过 MOFs 的可控热解来应对上述 挑战. 热解可以将不稳定的 MOFs 节点或连接物转 化为稳定的金属氧化物或碳骨架,并促进在 3D 多 孔框架内形成超小甚至原子分散级别的金属或氧化 物颗粒,这种转化过程强调并揭示了桥接有机连接 在 MOFs 分解过程中结构转变和相的重要性.此外, 具有足够热稳定性的 MOFs 前驱体, 如 ZIF 系列, 可以在热转化过程中保持其形态,因为热不稳定框 架往往在其转化温度以下坍塌.

Wang 等^[31] 以常温搅拌法制备 ZIF-67 为催化 剂, 通过 MOFs 的煅烧制备了不同 K 组成的催化 剂. 以 3 ℃·min⁻¹ 的升温速率在 500 ℃ 的温度下煅 烧 2 h, 得到保留部分 MOFs 结构的 K-Co₃O₄ 催化 剂. Qi 等^[32] 采用一锅溶剂热法合成 CuZn-BTC 并 将其与 Al₂O₃ 复合,得到的 Cu-Zn@MOFs⊂Al₂O₃ 前 驱体在空气中煅烧,然后用 10% H₂ +90% N₂(φ) 还 原,最终得到八面体结构的催化剂. Li 等^[33] 在 KIT-6 中原位生长 Cu 修饰的 ZIF-67,得到的前驱体通过 两步焙烧法,先在氮气气氛下 550 ℃ 热解 4 h,然后 在空气气氛下 400 ℃ 煅烧 2 h. 先在惰性氛围中焙 烧产生碳能有效地阻止金属氧化物的团聚,得到粒 径更小,比表面积更大的催化剂^[34]. Huang 等^[35] 利 用气溶胶辅助合成方法制备 MOFs 材料. 在气相中 采用液滴蒸发诱导自组装,在喷雾干燥过程中,Cu-MOFs 和 ZnO 前驱体一起沉积在 Al₂O₃ 纳米颗粒 上,形成 Cu-MOFs-Zn/Al₂O₃ 纳米颗粒簇,先将 Cu-MOFs-Zn/Al₂O₃ 前驱体在空气中煅烧,再在 H₂ 中煅 烧,得到 Cu-ZnO/Al₂O₃, Cu 纳米颗粒形成并与 ZnO 均匀地分散在 Al₂O₃ 纳米颗粒团簇上.

通过可控热解,我们不仅可以形成稳定的金属 氧化物或金属碳化物,同时还能保留部分 MOFs 结 构,这种策略通过合理设计和调控,使得催化反应的 化学性质和活性位点得以可控,同时具备了较好的 热稳定性,有助于在工业应用中实现长期稳定运行. 目前,各种合成策略已被开发用于构建基于 MOFs 的选择性 CO, 加氢催化剂. 金属节点和有机连接体 的改性为 MOFs 基催化剂的制备带来了新的思路. 另一方面,由于 MOFs 具有丰富的孔隙和高的比表 面积,金属纳米颗粒和分子催化剂更容易与 MOFs 结合. 然而, 对于提高催化位点的均匀性, 避免其脱 落和团聚,仍然需要简便的新方法.未来,除了探究 上述这些方面,也要探讨加氢条件下,H从金属颗粒 向无缺陷载体表面溢出的氢溢流现象. 通过制备单 原子催化剂、增加金属-支撑界面催化剂、封装金属 催化剂和分离双组分催化剂等降低氢溢流对催化剂 的影响.这里还需要强调的是, MOFs 中引入缺陷导 致 MOFs 分解机制发生变化或 MNPs 导致氢溢出 效应,从而造成降解和骨架溶解往往是 MOFs 作为 非均相催化剂的严重局限性. 另一方面, 有效利用溢 出效应可以提高催化性能(活性、选择性和稳定性). 近年来,增加金属-支撑界面催化剂、封装金属催化 剂和分离双组分催化剂,有效地利用了氢溢出效应.

3 MOFs 应用于 CO_x 加氢制醇

3.1 CO_x加氢制甲醇

由于对替代原料和减少 CO₂ 排放的需求不断 增加, CO_x 加氢生产增值燃料已被广泛研究. 对于 CO₂加氢,许多 Cu 基催化剂已经进行了大量的研究,且工艺也非常发达,大连物化所^[36]使用 ZnO-ZrO₂基催化剂每年可生产 1 500 t 甲醇,且其还建立了合成气/二甲醚/MA 间接从煤中生产乙醇的路线. 虽然合成气 (CO 或 CO₂)合成甲醇和乙醇的工艺已经很发达,但由于其碳净零排放,这些工艺变得越来越重要,这对于正确利用 CO₂并实现碳中和仍然至关重要.

Yaghi 等^[28] 将超小的 Cu 纳米颗粒包封在 UiO-66 中,并将其运用于 CO2 加氢催化中. 在这种结构 中, Cu表面上精确地排列了有序的 ZrO₂ SBUs、 Cu 纳米颗粒和二级构建单元形成了高度界面接触, 同时 Cu NC 和 ZrO₂ SBUs 之间存在强相互作用,即 强金属-载体相互作用效应 (SMSI), 这种效应导致 产生金属 Cu 和 Cu 阳离子 2 种活性组分, 金属 Cu 促进 H, 解离而 Cu 阳离子可以保证甲酸酯中间体 的稳定性.这两种性质使得该催化剂的性能超过了 基准的 Cu/ZnO/Al₂O₃ 催化剂,并且稳定地提高了 8 倍的产率和100%的甲醇选择性.此外,在空间上, 有机连接物有效地将 ZrO₂ SBUs 分隔开来,确保了 反应物对活性位点的可及性. 这项研究为设计高产 物选择性和高收率的 MOFs 基多相加氢催化剂提 供了新的思路,同时也标志着 MOFs 中的 SBUs 首 次与载流子 (如金属氧化物)发生强烈的相互作用. Zhu 等^[37] 研究发现分离的 Cu 只能通过 RWGS 反 应产生 CO, 而锚定在 Zr₆O₈ 节点上的 Cu NPs 产生 更多的 Cu-O-Zr 界面位点,显示出更高的甲醇合 成活性. An 等^[27]进一步报道了 MOFs 中的有机配 位基团在稳定金属 NPs 中起着至关重要的作用, 而 Cu、ZnO,和Zr节点的协同作用可能在CO,加氢制 甲醇中起关键作用. CO₂-TPD 表征表明, CO₂在 ZnO_r和不饱和 Zr 位点上被强烈吸附和活化, 而氢 在Cu上被活化提供解离的 H,并溢出与活化的 CO₂反应. 由于与 bpy 位点和 Zr 节点的强相互作 用, Cu/ZnO, 可以在 UiO-bpy 的孔隙中高度分离, 并 在 CuZn@UiO-bpy 中形成丰富的 Cu-ZnO,-Zr 界 面位点,从而使其对 CO2 加氢制甲醇的催化性能优 于Cu/ZnO/Al₂O₃. 此外,将活性催化剂配方Cu/ZnO_x NPS 包裹在 UiO-bpy 空腔内, 防止了 Cu NPS 的团 聚和 Cu 与 ZnO_x 的相分离, 增强了催化剂的催化活 性. XPS 表征还观察到, Cu 表面的解离氢溢出到 Zr 基 SBU 将部分 Zr(IV) 还原为 Zr(III), 将部分 Zn(II) 还原为 Zn(0). 低价态的 Zn 和 Zr 可以作为催化剂

中的活性组分或辅助组分为 CO₂ 加氢合成甲醇提 供了高的催化活性和选择性.上述进展为高效 MOFs 基催化材料的优化设计提供了新的思路. 然 而,尽管这些 MOFs 催化剂在 CO_x 加氢中得到了广 泛的应用,但由于它们的热/水热稳定性较低, MOFs 的稳定性差,特别是遇到过渡金属 NPs 时,极 大地阻碍了它们在恶劣条件下的实际应用,通常需 要在相对较低的温度下进行反应.

Liu 等^[38]利用缺陷的 UiO-66 限制 Cu NPs, 再 进行氢还原处理制备稳定的 Cu@ZrO, 催化剂, 有 助于在三维 (3D) 多孔框架内生成微小甚至原子级 分散的金属或氧化物颗粒,如图 5 所示.还原过程 中 UiO-66 的骨架逐渐转变为具有多孔三维结构的 ZrO₂, 而 Cu-ZrO_x 界面则被保留, 强 SMSI 作用使 Cu在Cu-ZrO,界面上以Cu⁺的形式存在,Cu⁺种类 的增加与甲醇的生成速率密切相关,因此 CO2 加 氢制甲醇选择性得到显著改善. Qi 等^[32] 报道了 MOFs 模板策略合成的 Cu-ZnO/Al₂O₃ 催化剂与传 统的 Cu-ZnO/Al₂O₃ 相比甲醇选择性显著提升. 进一 步表征结果表明,以Cu-Zn@MOFs为前驱体在空 气中焙烧后可以有效地减小 Cu 和 ZnO 颗粒的晶粒 尺寸且改善 Cu 的分散, MOFs 的模板化制备导致 Zn迁移到 Cu表面,形成了更多 Cu-ZnO 界面, XPS 光谱证实 MOFs 前驱体催化剂的晶格氧占比 为71.6%, 推测更丰富的晶格氧含量更有利于 Cu-ZnO,界面的形成,从而导致了催化性能的提 升. Hu 等^[39] 通过直接煅烧 Cu@ZIF-8 制备了更接

图 5 Cu@UiO-66 到 3D 多孔 Cu@ZrO_x 甲醇合成催化剂的 合成及原位演化说明^[38]

Fig.5 Illustration of synthesis and *in situ* evolution of Cu@UiO-66 to 3D porous Cu@ZrO_x framework catalyst for methanol synthesis^[38] 近 ZnO-Cu 界面的逆 ZnO/Cu 催化剂.结果表明, Cu颗粒被亚 5 nm ZnO 覆盖的逆结构, 这促进了 Cu-ZnO的亲密界面的形成, 增强了 SMSI 作用, 促进了 CO₂加氢过程中甲醇的生成. Yu 等^[40] 以 HKUST-1为Cu源制备ZrO2@HKUST-1前驱体的 煅烧和还原制备了一系列具有高分散 Cu 纳米团簇 的 Cu-ZrO, 催化剂, 形成强烈的 Cu-ZrO, 界面相 互作用,在 CO,加氢过程中具有优异的催化性能. Han 等^[41] 以负载 Cu 的 Zr-MOFs 为前驱体, 在 300 ℃ 下热解形成了独特的高温损伤空心结构 Cu@ZrO, 该结构既防止了 Cu 纳米颗粒的烧结, 同时允许产 物和反应物的运输. 低温热解生成了高度分散的 Cu 纳米颗粒, 具有平衡的 Cu⁰/Cu⁺位, 生成了大量的 表面碱性位和中空结构中丰富的 Cu-ZrO₂ 界面. 通过原位红外了解反应机理, CO2被 Cu-ZrO2界 面上的载体表面的碱性位点吸附/活化成碳酸盐,同 时, H, 在 Cu 位点被解离成 Cu-H, 随后 H 原子在 金属-载体界面向载体表面溢出,氢化碳质中间物 质,形成 HCOO*、CH₃O*和 CH₃OH. Xu 等^[42]以 UiO-66为结构模板,采用共沉淀法制备了 Cu/ZnO,/ZrO,型催化剂应用于 CO,加氢反应. 通过 煅烧对 MOFs 材料部分分解有利于解决催化剂中 Cu和 ZnO 相在高温反应过程中容易分离以及 MOFs 通道空间限制导致暴露的催化活性相对较少 的问题. 该催化剂甲醇选择性高达 90%, 甲醇产率 为 216.7 g·kg⁻¹·h⁻¹. Huang 等^[35] 用气溶胶辅助合成 法制备的 Cu-ZnO/Al₂O₃催化剂用于 CO+CO₂加 氢制甲醇, CO₂、CO、H₂和 N₂的进料体积比为 22:22:44:12. 评价结果说明, Cu-ZnO 界面是 催化剂拥有良好活性的主要原因. 通过15h的运行 稳定性测试, STY_{MeOH}和 S_{MeOH}的结果相对稳定, 表 明 MOFs 衍生材料在催化过程中具有较高的操作 稳定性.

除了 Cu基催化剂以外,其他金属负载的 MOFs也被开发出来用于二氧化碳加氢制甲醇.Ye 等^[43]设计了一种带有催化活性的 Lewis 对官能团 的 UiO-67 MOFs 催化剂,这种催化剂可以促进 H₂ 的解离,生成分别与 Lewis 酸和碱位点结合的氢化 物和质子 H 原子,从而促进 2 个氢的一系列同时 转移生成甲醇,有效地避免了强结合的 CO₂ 对催化 部 位 的 毒 害. Zhang 等^[44] 在 阐 明 了 MOFs 中 Zn—O—Zr 界面位点催化 CO₂ 加氢制甲醇的机理. 其 中, MOF-808 的µ₃-OH 被 ZnEt₂ 去质子化形成 Zr₃(µ₄-O)ZnEt, 然后原位去除 Zr SBUs 上盖层甲酸 酯,同时在不饱和 Zr⁴⁺位点上生成单个 Zn—O—Zr 开放位点,记为 MOF-808-Zn. 利用 H₂-TPR 和 H/D 交换实验证实, H2 在 Zn²⁺位点上被活化. 然后, 由 Zn²⁺和 O²⁻组成的 Lewis 酸碱对在 Zn—O—Zr 界面 位置引起活化的 H₂异裂形成 [Zr⁴⁺—O(—H⁺)— Zn²⁺— H⁻] 中间体, 而 Zn²⁺—O—Zn⁴⁺位点对 CO₂ 的 吸附和转化至关重要,没有开放 Zr⁴⁺位点的 MOFs 基于 Zr 的节点上支持的 Zr²⁺中心也无法产生甲醇. 原位漫反射红外傅里叶变换光谱 (DRIFTS) 光谱和 DFT 计算进一步表明, 活性 CO₂ 与 H⁻在 Zn²⁺位点 上反应生成甲酸中间体*HCOO,随后加氢生成二氧 亚甲基*H₂COO、甲醛*H₂CO、甲氧基*H₃CO, 最后 生成甲醇. 在 Zn—O—Zr 界面中, Zn²⁺与不饱和 Zr⁴⁺ 具有较强的协同作用,催化效率较高,此外,由于 Zn²⁺和 Zr 节点之间的强相互作用, MOF-808-Zn 在 蒸汽中表现出 100 h 以上的高稳定性. Cui 等^[45] 混 合 MOFs 模板导向策略构建了一个空心结构的 In₂O₃@ZrO₂催化剂,在 500 ℃ 焙烧的样品保持了 一维纳米管形态,但两端开放,呈空心结构.通过 XPS 和理论计算分析等进一步研究了该催化剂的 电子和结构活性位点,证实了插入的 t-ZrO2多面体 修饰了表面 In 位点的电子位置, 形成了 ZrO₂/In₂O₃ 异质结面,丰富的 In₂O₃/ZrO₂ 异质界面,促进了 CO₂ 加氢甲醇过程中 H, 的解离和 CO, 的活化. 其中电 子从 ZrO2向 In2O3的迁移形成了富电子的 In2O3, 这使得在甲醇合成过程中更容易将 HCOO*转化为

CH₃O*. 通过研究反应机理发现, 吸附的 CO₂ 通过 H₂ 异 解 引 起 的 O—H^{δ +}和 M—H^{δ -}初 始 氢 化 成 HCOO*, 然后 HCOO*解离成 CH₃O*, 最终氢化成 甲醇.

Yin 等^[46] 考虑到 MOFs 孔隙框架可以有效地 将金属纳米颗粒限制在孔径中(尤其是贵金属),制 备了一种高效的 PdZn 合金催化剂. 该催化剂利用 ZIF-8 的孔隙框架的约束效应,成功将微小的 Pd 颗 粒嵌入到 ZIF-8 中, 用于 CO₂加氢反应. 通过研究 在空气条件下不同温度煅烧后得到的催化剂,得到 了理想的 Pd-ZnO 催化剂, 其有助于形成 Pd--ZnO 界面上强烈的 SMSI. 透过 TEM 图像和粒度分布分 析, ZIF-8 基体内形成了均匀的亚 2 nm 的 Pd 纳米 颗粒 (1.2 nm ± 0.2 nm), 认为 MOFs 的孔结构可以 有效地限制内部贵金属纳米颗粒的过度生长.而 生成的氧化锌平均粒径为 20 nm. 如此小尺寸的 ZnO有利于形成 Pd—ZnO 界面. 金属 Pd 在 H_2 预 还原后,经HRTEM和 XRD 验证,其转变为 PdZn 合金相. 大量的小尺寸 PdZn 合金颗粒和 ZnO 表 面高含量的氧缺陷使得催化剂产生优异的活性, Pd 和 ZnO 载体之间的强相互作用也保证了 PdZn 催化剂的长期稳定性.上述部分催化剂的性能如 表2所示.

3.2 CO_x加氢制低碳醇

当前,科研人员正在深入研究 CO_x 加氢制低碳 醇的途径,并普遍认为这是一种具有美好前景的方 法. 但是,由于反应具有复杂性和副产物较多的特

Catalyst	CO, CO ₂ , H ₂ ratio	Т	Р	S.V.	Con. /%	Sel. /%	STY ^a	Dof
		/℃	/MPa					Kel.
Cu@UiO-66	1:3	175	1.0	$4\ 200^{a}$	-	100	TOF $3.7 \times 10^3 \text{ s}^{-1}$	[28]
CuZn@UiO-bpy	1:3	250	4.0	$18\ 000^{a}$	3.3	100	$2.59 \text{ g} \cdot \text{kg}^{-1} \cdot \text{h}^{-1}$	[27]
$Cu@ZrO_x$	1:3	260	4.5	-	13.1	78	796 g \cdot kg ⁻¹ \cdot h ⁻¹	[38]
Cu/ZnO _x /ZrO ₂	1:3	260	4.0	$12\ 000^{a}$	18.7	52	$216.7 \text{ g} \cdot \text{kg}^{-1} \cdot \text{h}^{-1}$	[42]
$Cu\text{-}ZnOMOF{\subset}Al_2O_3$	1:3	240	3.0	$14400^{\rm a}$	9.1	87	$407.2 \text{ g} \cdot \text{kg}^{-1} \cdot \text{h}^{-1}$	[32]
CM-300	1:3	200	3.0	$15\ 600^{\rm b}$	5.0	85	-	[41]
Cu-ZnO/Al ₂ O ₃	1:1:2	220	3.0	$6\ 000^{\mathrm{b}}$	-	85	$23.14 \text{ mmol} \cdot \text{g}^{-1} \cdot \text{h}^{-1}$	[42]
MOF-808-Zn	1:3	250	4.0	$4\ 500^{\mathrm{a}}$	2.1	>99	$190.7 \text{ mg} \cdot \text{g}^{-1} \cdot \text{h}^{-1}$	[44]
In ₂ O ₃ @ZrO ₂	1:3	290	3.0	$12\ 000^{a}$	10.4	84.6	$0.29 \text{ g} \cdot \text{g}^{-1} \cdot \text{h}^{-1}$	[45]
Pd-ZnO	1:3	270	4.5	21 600 ^a	13.6	56.2	$0.65 \text{ g} \cdot \text{g}^{-1} \cdot \text{h}^{-1}$	[46]

表 2 MOFs 基催化剂在 CO_x 加氢制甲醇中的性能总结 Table 2 Summary of performance of MOF-based catalysts in CO_x hydrogenation for methanol synthesis

a. GHSV, volume flow rate, h^{-1} ; b. WHSV, mass flow rate, $mL \cdot g^{-1} \cdot h^{-1}$.

点, CO_x 加氢直接合成高等醇的产物分布更为广泛, 目前, 能够成功应用于工业生产的催化剂尚未研制 成功. 为了克服这些难题, 研究者们正在积极探索新 的解决方案, 其中 MOFs 材料的应用成为备受关注 的焦点.

Li 等^[47] 制备了 ZIF-8 衍生的吡啶-N 掺杂碳上 负载活性金属,从而发现吡啶-N和碳化物有利于 CO, 的吸附. Lu 等^[48] 进一步研究了含氮和不含氮 的 Co-MOFs, 这 2 种 MOFs 衍生的 Co 基催化剂在 激活 CO, 时经历了不同的反应途径. 当在碳基质中 引入氮时,催化剂涉及氧化还原和甲酸盐中间体的 形成;而在催化剂中没有氮时,只有氧化还原机制 起关键作用. 由于 CO_x 合成乙醇的反应机理包括甲 酸盐介导和 CO 解离等多个不同的过程, 这一研究 为多通道合成乙醇提供了有益的参考. Wang 等^[31] 制备了一系列 K 促进的 ZIF-67, 用于低碳醇的合 成.研究发现,K的加入抑制了甲烷和较高碳氢化合 物的生成,提高了对乙醇、乙醛和其他含氧化合物 的选择性. 通过 XRD 分析证实了 CO, 反应过程中 会形成 Co₂C, 含氧化合物选择性的增加与之密切相 关. 同时强调了 MOFs 介导的合成方法在制备用于 低碳醇合成的 Co 基催化剂方面的潜在应用.

Cui 等^[49]在 MOFs-74 的模板内原位构建了 Co/MnO, 纳米颗粒, 通过研究不同热解温度对样品 结构的影响发现 400 ℃ 时不完全热解的催化剂较 好的保留了原始 MOFs-74 的骨架. 而在 500 ℃ 以 上热解后, MOFs-74 纳米晶会完全分解, 产生新的 多孔碳材料, 且完全热解的 MOFs 材料的比表面积 也会大幅度下降.利用 ICP 和 XPS 等手段发现,热 解过程中,C在表面富集,而大部分金属逐渐迁移到 支架内部,可见该催化剂不仅保留了原始 MOFs-74 的骨架,且成功将 Co/MnO,限制在骨架内.该特点 使其在 HAS 过程中提供了 Co⁰、Co²⁺和 Co₂C 3 种 协同活性位点,使其催化性能显著增强,且具有非常 低的水气转化活性 (催化性能). Guo 等^[50] 也通过不 完全热解层状 MOFs 材料 CoMn-MOFs, 发现样品 在 350 ℃ 下热解, 骨架中仍残留大量的 Co²⁺, 这些 Co²⁺作为 CO 的非解离吸附位点,极大地促进了醇 的生成.同时,通过一系列表征发现 Mn 和 Co 之间 存在强相互作用, Mn 的加入阻止了金属 Co 的团 聚,且增加了反应过程中 Co₂C 的生成.此外,由于 不完全热解的催化剂中剩余的 MOFs 结构, 该催化 剂的稳定性能评价也得到了满意的结果. Li 等^[51]

使用一锅法将 H₃PMo₁₂O₄₀ 固定在 ZIF-67 笼中, 然 后通过精确的碳化制备出负载有 Co/Co₆Mo₆C 的 催化剂.该研究强调了封装效应和 ZIF-67 复合物 (PZIFs) 中原位碳化对同时形成 Co₆Mo₆C 和金属钴 (Co⁰) 纳米颗粒的重要性, 该催化剂在高级醇合成中 表现出色,超越了 Co@C 或 Co₆Mo₆C 催化剂.在 275 ℃和 3.0 MPa 的 HAS 条件下, 其 CO 转化率为 48%, C₂₊-OH 时空产率为 99 mg·g⁻¹·h⁻¹. Li 等^[33]介 绍了一种新型的 CoCu 双金属催化剂,该催化剂在合 成气直接制备高级醇 (HAS) 中表现出卓越的性能. 通过优化 Co/Cu 比例, Co₄Cu₁-Z@KIT-6 催化剂在 275 ℃和 3.0 MPa 条件下表现出卓越的活性, CO 转 化率为 39.7%, C₂₊醇的空时产量为 11.1 mmol·g⁻¹·h⁻¹, 分别比由非晶态 CoCu 草酸盐复合物前驱体制备 的 Co₄Cu₁-G@KIT-6 催化剂高 2 倍和 3 倍. 在 160 h 的反应过程中,未观察到催化剂的明显失活.由于保 留了有序 MOFs 结构, Co4Cu1-Z@KIT-6 催化剂中 Co和 Cu活性位点的高度分散、均匀分布和密切相 互作用得以实现.此外,研究还证明了催化剂前体的 有序程度对 CO 吸附具有重要影响, Co₄Cu₁-Z@KIT-6中的所有 Co 物种均具有高 CO 解离能力, 有利 于 CO 桥式吸附. 催化剂表现出卓越的 HAS 性能, 为设计和合成高性能 CoCu 基催化剂提供了新的 见解.

Han 等^[52] 采用共浸渍法制备了一系列不同金 属负载的 Zr 基金属有机骨架 (UiO-66) 负载的 Rh-Mn 催化剂, 通过对比以 UiO-66 和 ZrO2 作为载体 的催化剂,发现UiO-66对于合成C2+含氧化合物的 活性更高.其中,性能最好的催化剂的 C2+含氧化合 物的产率可达到 200.1 g·kg⁻¹·h⁻¹. 分析发现, UiO-66 的三维孔隙结构有利于金属的分散,并在高面积多 孔固体中提供高密度的催化位点.当Rh:Mn质量 比恒定但金属总含量不同时, Rh 和 Mn 的总负载量 超过 3%, MOFs 的结构会发生坍塌, 样品比表面积 迅速下降.此外,通过调控 Mn 对 Rh 促进剂用量, 发现金属负载 Mn: Rh 低时, Rh—Mn 相互作用较 弱,而 Mn 含量越高, Rh—Mn 相互作用越强,导致 CO-Rh 键强度减弱,有助于提高 CO 的插入效率, 从而增强对 C₂含氧化合物的选择性. 该课题组^[29] 进一步研究了不同有机配体制备 UiO 材料作为 Rh-Mn 催化剂载体, 研究发现, Zr-UiO-MOFs 的拓扑结 构有利于受限的超小双金属 Rh-Mn 纳米颗粒的固 定, 而 UiO-67 的较大空腔更有利于金属引入, 表现 出最高的 C₂₊含氧化合物产率 322 g·kg⁻¹·h⁻¹.

An 等^[53] 通过利用 Zr₁₂ 纳米团簇二级构建单 元 (SBUs) 在不同碱金属 (Li、Na、K、Cs) 促进的 Zr₁₂-MOFs 中合成了双金属 Cu²¹位点.在 100 ℃ 的 低温条件下, Zr₁₂-bpdc-CuCs 的乙醇选择性大于 99%, 时空产率高达 6 425 mmol·g⁻¹·h⁻¹. Cu²¹ 在碱金 属促进剂的帮助下, 甲醇和甲酰物中的直接 C一C 偶联为 Cu 中心提供了富电子的环境, 以提高活性 和稳定甲酰中间体. Chen 等^[54] 在 Ce-MOFs 上负载双 Pd 位点并通过在原位生成的水中富集疏水性硅壳层 稳定 Pd 位点.研究表明, 由于疏水壳层的存在, 催 化剂表现出稳定的 CO 转化, 而 Ce-MOFs 阻止了双 Pd 活性位点在热解的过程中发生团聚. 双 Pd 原子 之间的协同催化作用导致*CH_xOH 中 C—O 键的超 强裂解能力以及*CH_x和*CO 之间的 C—C 偶联. 值得 一提的是, 所构建的双 Pd 位点催化剂对乙醇的选 择性为 98.7%, 产率高达 11.6 g·g⁻¹·h⁻¹, 并且在 60 h 的连续测试中表现出优异的稳定性. 在上述研究的启 发下, Zeng 等^[55] 通过溶剂热法制备 MIL-125-NH₂, 围绕 Ti₈(μ_2 -OH)₄ 次级构建单元 (SBUs) 构建 的多个 Cu¹位点可以将 CO₂ 氢化成 C₂H₅OH. 上述 部分催化剂的性能如表 3 所示.

表 3 MOFs 基催化剂在 CO _x 加氢制 C ₂₊ OH 中的性能总结	
--	--

Table 3 Summary of performance of MOF-based catalysts in CO_x hydrogenation for C₂₊OH synthesis

Catalyst	CO or CO_2 : H_2 ratio	Т	Р	S.V. ^c	Con./%	R-OH	C_{2^+} Alc. Sel. in	STY ^a	Pof
		/℃	/MPa			Sel. /%	Total Alc/%		Kel.
5K-Co ₃ O ₄	$1 : 1^{a}$	270	4	36 000	>1.0	-	89.1	-	[31]
Co/MnO _x @	$1:2^{a}$	200	2	4 500	67	48 7 ^f	93 1 ^f		[40]
quasi-MOF-74	1 • 2	200	3	4 500	6./	40.7	<i>)).</i> 1	—	[49]
CoMn-350	$1 \div 2^{a}$	240	3	42 000	51.5	57.5	82.4	152.9 mmol \cdot g ⁻¹ \cdot h ⁻¹	[50]
Co _{4.7} Mo@C	$1 : 2^{a}$	275	3	15 000	48.0	11.9	80.3 ^f	99 mg·g ⁻¹ ·h ⁻¹	[51]
Co ₄ Cu _{1-Z} @KIT-6	$1 : 1^{a}$	270	3	4 800	39.7	35.6	73.0	11.1 mmol \cdot g ⁻¹ \cdot h ⁻¹	[33]
RM@UiO-67	$1 : 2^{a}$	300	3	10 000	21.9	54.0 ^d	_	$322 \text{ g} \cdot \text{kg}^{-1} \cdot \text{h}^{-1}$	[29]
Pd ₂ Ce@Si ₁₆	$1:3^{b}$	240	3	3 000	6.0	98.4 ^e	_	$11.6 \text{ g} \cdot \text{g}^{-1} \cdot \text{h}^{-1}$	[54]
Zr ₁₂ -bpdc-CuCs	$6:1^{b}$	85	35	-	_	>99.0 ^e	_	$6425 \text{ mmol} \cdot \text{g}^{-1} \cdot \text{h}^{-1}$	[53]

a. CO: H₂ ratio; b. CO₂: H₂ ratio; c. GHSV, volume flow rate, h⁻¹; d. C_{2*}OH selectivity; e. Ethanol selectivity; f. Mass fraction.

4 结论与展望

MOFs 衍生材料作为一种新型的催化材料, 在 碳氧化物加氢制醇反应中具有显著的性能, 其独特 的结构、良好的织构性质和易于功能化的优势使其 成为碳氢化物加氢制醇反应的优秀催化剂. 我们综 述了 MOFs 材料在 CO/CO₂ 转化为甲醇和高级醇的 最近进展, 并阐述了 CO/CO₂ 加氢反应的部分机理, 简述了两种碳氧化物的协同和制约, 总结了其 MOFs 催化剂的制备方式以及对制备策略提出了见 解. 在 MOFs 中负载活性金属纳米粒子, 有助于活 性金属的分散、双金属活性位点的均匀分布以及促 进金属-金属之间的强相互作用. 将活性组分包封 在 MOFs 空腔内, 则有助于金属和载体之间的强相 互作用, 限制了活性组分聚焦的问题, 有效稳定活性 组分. 此外, MOFs 中的不饱和金属节点和有机配体 未配位的形成 Lewis 酸碱活性位点, 可以促进 H₂ 解 离,导致催化活性的进一步增强.值得一提的是, MOFs 优秀的孔道结构使其能吸附更多的 CO_x 气 体,促进反应进行.

该方向未来的研究应主要集中在以下几个 方面: (1) 深入探究 CO_x 混合时加氢反应 2 种碳氧 化物的协同与制约以及其反应机理,设计和开发 CO 和 CO₂ 加氢生产醇类产品的高效催化剂; (2) 开 发更加高效简易的 MOFs 衍生催化剂,提高其在 CO/CO₂ 加氢反应中的活性和选择性. 通过调整金 属节点和有机配体的结构,设计新型的 MOFs,以提 高催化剂的稳定性和催化效率; (3) 探究 MOFs 材料 在加氢反应中的氢溢流现象,并通过设计高效催化 剂缓解或有效利用溢出效应. 目前,可以通过设计单 原子催化剂、增加金属负载界面催化剂、包封金属 催化剂和分离双组分催化剂等方法有效地利用氢溢 出效应.

参考文献:

- [1] Wu Jiao-jiao(邬娇娇), Xu Xiang-ya(徐向亚), Liu Dong-bing(刘东兵), et al. Application of metal-organic frameworks(MOFs) in hydrogen storage field(金属有机 骨架材料 (MOFs) 在储氢领域的应用)[J]. New Chem Mater(化工新型材料), 2023, 51(11): 16-21.
- [2] Liu Jing(刘 晶), Ren Hong-wei(任宏伟), Fan Jinchuan(樊金串), et al. Effects of heat treatment methods on the structure of Cu-Zn-Al catalyst prepared by liquid phase method and the catalytic performance of CO hydrogenation(热处理条件对完全液相法制 Cu-Zn-Al 催化剂结构及 CO 加氢性能的影响)[J]. J Mol Catal (China)(分子催化), 2019, 33(2): 166-173.
- [3] Shen Hai-yu(申海玉), Zhao Hua-hua(赵华华), Yang Jian(杨建), et al. Progresses in the application of MOFs in selective hydrogenation of unsaturated aldehydes (MOFs 在不饱和醛选择加氢中的应用研究进展)[J]. J Mol Catal (China)(分子催化), 2021, 35(6): 571-582.
- [4] Li He-jian(李和健), Wu Zang-zang(吴藏藏), Zheng Li(郑丽), et al. Selective catalytic oxidation of benzyl alcohol over Cu-BTC and its derivatives(Cu-BTC 及其 衍生物在苯甲醇选择氧化反应中的催化活性)[J]. J Mol Catal (China)(分子催化), 2017, 31(4): 341-347.
- [5] Xu Huan(徐缓), Zhang Mao-yuan(张茂元), Huang Xiang(黄香), et al. Preparation of Pd/MIL-101 as a heterogeneous catalyst for C-H activation of indoles (Pd/MIL-101 的制备及非均相催化吲哚 C—H活化)[J]. J Mol Catal (China)(分子催化), 2017, 31(5): 472-479.
- [6] Zeng Zhuang(曾壮), Li Ke-zhi(李柯志), Yuan Zhi-wei (苑志伟), et al. Advances in modified Fischer-Tropsch synthesis catalysts for CO/CO₂ hydrogenation to higher alcohols(CO/CO₂ 加氢制低碳醇改性费托合成催化剂 研究进展)[J]. Chem Ind Eng Prog(化工进展), 2024, 43 (6): 3061–3079.
- [7] Li Gui-xian(李贵贤), Tian Tao(田涛), Zhang Qi(张琪), et al. Recent advances of nanomaterials in hydrogenation of CO₂ to methanol(纳米催化剂在 CO₂ 加氢制甲 醇中的研究进展)[J]. J Mol Catal (China)(分子催化), 2022, 36(2): 190-198.
- [8] Liang Sheng(梁 涅), He Qiu-yue(何秋月), Sun Baozhen(孙宝珍). Reaction mechanisms of WGSR catalyzed by Cu₂O(111): A theoretical study(Cu₂O(111) 催化 水煤气变换反应机理的理论研究)[J]. J Mol Catal (China)(分子催化), 2017, **31**(6): 553-566.
- [9] Guo S J, Wang H, Qin Z F, et al. Conversion of the CO and CO mixture to alcohols and hydrocarbons by hydrogenation under the influence of the water-gas shift

reaction, a thermodynamic consideration[J]. *J Fuel Chem Technol*, 2023, **51**(4): 482–491.

- [10] He Y, Fu W, Tang Z, *et al.* Thermodynamic analysis of ethanol synthesis by CO₂ hydrogenation using Aspen Plus: Effects of tail gas recycling and CO co-feeding[J]. *Chem Eng Commun*, 2024, **211**(2): 300–310.
- [11] Larmier K, Liao W C, Tada S, et al. CO₂-to-methanol hydrogenation on zirconia-supported copper nanoparticles: Reaction intermediates and the role of the metalsupport interface[J]. Angew Chem Int Ed, 2017, 56(9): 2318–2323.
- [12] Kattel S, Liu P, Chen J G. Tuning selectivity of CO₂ hydrogenation reactions at the metal/oxide interface[J]. *J Am Chem Soc*, 2017, **139**(29): 9739–9754.
- [13] Álvarez A, Bansode A, Urakawa A, *et al.* Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO₂ hydrogenation processes[J]. *Chem Rev*, 2017, **117**(14): 9804–9838.
- [14] Wang Y H, Katte S, Gao W G, et al. Exploring the ternary interactions in Cu-ZnO-ZrO₂ catalysts for efficient CO₂ hydrogenation to methanol[J]. Nat Commun, 2019, 10(1): 1166.
- [15] Zhong J, Yang X, Wu Z, et al. State of the art and perspectives in heterogeneous catalysis of CO₂ hydrogenation to methanol[J]. Chem Soc Rev, 2020, 49(5): 1385–1413.
- Zhao Y F, Yang Y, Mims C, *et al.* Insight into methanol synthesis from CO₂ hydrogenation on Cu(111): Complex reaction network and the effects of H₂O[J]. J Catal, 2011, 281(2): 199–211.
- [17] Xue X, Weng Y, Yang S, *et al.* Research progress of catalysts for synthesis of low-carbon alcohols from synthesis gas[J]. *RSC Adv*, 2021, **11**(11): 6163–6172.
- [18] Damma D, Smirniotis P G. Recent advances in the direct conversion of syngas to oxygenates[J]. *Catal Sci Technol*, 2021, **11**(16): 5412–5431.
- [19] Ao M, Pham G H, Sunarso J, et al. Active centers of catalysts for higher alcohol synthesis from syngas: A review[J]. ACS Catal, 2018, 8(8): 7025–7050.
- [20] Xiao Kang(肖康), Bao Zheng-hong(鲍正洪), Qi Xingzhen(齐行振), et al. Advances in bifunctional catalysis for higher alcohol synthesis from syngas(合成气制混合 醇双功能催化研究进展)[J]. Chin J Catal (催化学报), 2013, 34(1): 116-129.
- [21] Zaman S, Smith K J. A review of molybdenum catalysts for synthesis gas conversion to alcohols: Catalysts, mechanisms and kinetics[J]. *Catal Rev*, 2012, 54(1):

41-132.

- [22] Xiong H, Jewell L L, Coville N J. Shaped carbons as supports for the catalytic conversion of syngas to clean fuels[J]. ACS Catal, 2015, 5(4): 2640–2658.
- [23] Kusama H, Okabe K, Sayama K, *et al.* CO₂ hydrogenation to ethanol over promoted Rh/SiO₂ catalysts[J].
 Catal Today, 1996, 28(3): 261–266.
- [24] Kusama H, Okabe K, Sayama K, et al. Ethanol synthesis by catalytic hydrogenation of CO₂ over Rh-FeSiO₂ catalysts[J]. Energy, 1997, 22(2): 343–348.
- He Z, Qian Q, Ma J, et al. Water-enhanced synthesis of higher alcohols from CO₂ hydrogenation over a Pt/Co₃O₄ catalyst under milder conditions[J]. Angew Chem Int Ed, 2016, 55(2): 737-741.
- [26] Zhang Tian-shi(张天石), Li Jiao-yan(李佼妍). Research progress of supported catalysts based on metal organic frameworks(基于金属有机骨架材料负载型催 化剂的研究进展)[J]. *Liaoning Chem Ind* (辽宁化工), 2022, **51**(11): 1636-1640.
- [27] An B, Zhang J, Cheng K, *et al.* Confinement of ultrasmall Cu/ZnO_x nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO₂[J]. *J Am Chem Soc*, 2017, **139**(10): 3834–3840.
- [28] Rungtaweevoranit B, Baek J, Araujo J R, *et al.* Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO₂ hydrogenation to methanol[J]. *Nano Lett*, 2016, **16**(12): 7645–7649.
- [29] Yu J, Li G, Han Y, et al. Comparative study on ethanolbased oxygenate synthesis via syngas over Rh-Mn bimetallic catalysts supported on different UiO-MOFs[J]. Energy Fuels, 2022, 36(19): 11940–11949.
- [30] Tshuma P E, Makhubela B C, ÖHRSTRÖM L, et al. Cyclometalation of lanthanum(III) based MOFs for catalytic hydrogenation of carbon dioxide to formate[J]. RSC Adv, 2020, 10(6): 3593-3605.
- [31] Wang Z, Laddha G, Kanitkar S, et al. Metal organic framework-mediated synthesis of potassium-promoted cobalt-based catalysts for higher oxygenates synthesis[J]. Catal Today, 2017, 298: 209–215.
- [32] Qi T, Zhao Y, Chen S, et al. Bimetallic metal organic framework-templated synthesis of a Cu-ZnO/Al₂O₃ catalyst with superior methanol selectivity for CO₂ hydrogenation[J]. Mol Catal, 2021, **514**: 111870.
- [33] Li Z, Luo G, Chen T, et al. Bimetallic CoCu catalyst derived from *in-situ* grown Cu-ZIF-67 encapsulated inside KIT-6 for higher alcohol synthesis from syngas[J]. *Fuel*, 2020, 278: 118292.

- [34] Xu X, Cao R, Jeong S, *et al.* Spindle-like mesoporous α-Fe₂O₃ anode material prepared from MOFs template for high-rate lithium batteries[J]. *Nano Lett*, 2012, **12**(9): 4988–4991.
- [35] Huang R Y, Truc Nguyen Hoang T, Hsuen Y A, et al. Combined hydrogenation of CO₂ and CO to methanol using aerosol-assisted metal-organic frameworkderived hybrid catalysts[J]. Fuel, 2023, 349: 128647.
- [36] Xu D, Wang Y, Ding M, et al. Advances in higher alcohol synthesis from CO hydrogenation[J]. Chem, 2021, 7(4): 849–881.
- [37] Zhu Y, Zheng J, Ye J, *et al.* Copper-zirconia interfaces in UiO-66 enable selective catalytic hydrogenation of CO₂ to methanol[J]. *Nat Commun*, 2020, **11**(1): 5849.
- [38] Liu T, Hong X, Liu G. *In situ* generation of the Cu@3D-ZrO_x framework catalyst for selective methanol synthesis from CO₂ /H₂[J]. *ACS Catal*, 2020, **10**(1): 93–102.
- [39] Hu B, Yin Y, Zhong Z, et al. Cu@ZIF-8 derived inverse ZnO/Cu catalyst with sub-5 nm ZnO for efficient CO₂ hydrogenation to methanol[J]. Catal Sci Technol, 2019, 9(10): 2673–2681.
- Yu J, Liu S, Mu X, *et al.* Cu-ZrO₂ catalysts with highly dispersed Cu nanoclusters derived from ZrO₂@ HKUST-1 composites for the enhanced CO₂ hydrogenation to methanol[J]. *Chem Eng J*, 2021, 419: 129656.
- [41] Han X, Li M, Chang X, et al. Hollow structured Cu@ZrO₂ derived from Zr-MOFs for selective hydrogenation of CO₂ to methanol[J]. J Energy Chem, 2022, 71: 277–287.
- [42] Xu Y, Gao Z, Peng L, et al. A highly efficient Cu/ZnO_x/ZrO₂ catalyst for selective CO₂ hydrogenation to methanol[J]. J Catal, 2022, 414: 236–244.
- Ye J, Johnson J K. Screening lewis pair moieties for catalytic hydrogenation of CO₂ in functionalized UiO-66[J]. *ACS Catal*, 2015, 5(10): 6219–6229.
- Zhang J, An B, Li Z, *et al.* Neighboring Zn-Zr sites in a metal-organic framework for CO₂ hydrogenation[J]. J Am Chem Soc, 2021, 143(23): 8829–8837.
- [45] Cui W, Zhang Q, Zhou L, et al. Hybrid MOFs templatedirected construction of hollow-structured In₂O₃@ZrO₂ heterostructure for enhancing hydrogenation of CO₂ to methanol[J]. Small, 2023, 19(1): e2204914.
- [46] Yin Y, Hu B, Li X, et al. Pd@zeolitic imidazolate framework-8 derived PdZn alloy catalysts for efficient hydrogenation of CO₂ to methanol[J]. Appl Catal B-Environ, 2018, 234: 143–152.
- [47] Li Y, Cai X, Chen S, et al. Highly dispersed metal

carbide on ZIF - derived pyridinic - N - doped carbon for CO₂ enrichment and selective hydrogenation[J]. *ChemSusChem*, 2018, **11**(6): 1040–1047.

- [48] Lu X, Liu Y, He Y, *et al.* Cobalt-based nonprecious metal catalysts derived from metal-organic frameworks for high-rate hydrogenation of carbon dioxide[J]. *ACS Appl Mater Inter*, 2019, **11**(31): 27717–27726.
- [49] Cui W G, Li Y T, Zhang H, et al. In situ encapsulated Co/MnO_x nanoparticles inside quasi-MOFs-74 for the higher alcohols synthesis from syngas[J]. Appl Catal B-Environ, 2020, 278: 119262.
- [50] Guo S, Li Z, Li Y, et al. CoMn catalysts derived from partial decomposed layered CoMn-MOFs materials for higher alcohol synthesis from syngas[J]. Chem Eng J, 2023, 463: 142359.
- [51] Li F, Li J, Wang K, *et al.* Co/Co₆Mo₆C@C nanoreactors derived from ZIF-67 composite for higher alcohols

synthesis[J]. Compos Part B-Eng, 2021, 209: 108608.

- [52] Han Y, Yu J, Guo Q, et al. Synthesis of C₂ oxygenates from syngas over UiO-66 supported Rh–Mn catalysts: The effect of functional groups[J]. New J Chem, 2021, 45 (2): 696–704.
- [53] An B, Li Z, Song Y, *et al.* Cooperative copper centres in a metal–organic framework for selective conversion of CO₂ to ethanol[J]. *Nat Catal*, 2019, 2(8): 709–717.
- [54] Chen J, Zha Y, Liu B, et al. Rationally designed water enriched nano reactor for stable CO₂ hydrogenation with near 100% ethanol selectivity over diatomic palladium active sites[J]. ACS Catal, 2023, 13(10): 7110– 7121.
- [55] Zeng L, Cao Y, Li Z, et al. Multiple cuprous centers supported on a titanium-based metal-organic framework catalyze CO₂ hydrogenation to ethylene[J]. ACS Catal, 2021, 11(18): 11696–11705.

Research Progress in the Application of MOFs Materials in CO_x Hydrogenation to Alcohols

WANG Shi-yi^{1,2}, LUO Ming-sheng^{1,2*}, ZHANG Zi-yang^{1,2}

(1. School of New Materials and Chemical Engineering, Beiling Institute of Petrochemical Technology, Beijing 102617, China; 2. Beijing Key Laboratory of Fuel Cleaning and Efficient Catalytic Emission Reduction Technology, Beijing 102617, China)

Abstract: The escalating emissions of CO_2/CO during conventional fuel combustion have exacerbated environmental deterioration. A promising avenue to mitigate this environmental challenge is catalytic reduction of CO_2/CO into high-value alcohols through thermal catalysis. However, achieving high yields and selectivity necessitates designing efficient catalysts to augment CO_2/CO hydrogenation catalytic activity. MOFs materials have garnered substantial attention in hydrogenation catalysis owing to their unique physical and chemical properties and high tunability. Hence, we comprehensively review the research advancements of MOFs materials in CO_x hydrogenation for alcohol synthesis, elucidate partial reaction mechanisms of carbon oxide hydrogenation for alcohol synthesis, and provide preliminary insights into the performance and synthesis methods of MOFs materials employed in CO_x hydrogenation reactions.

Key words: syngas conversion; CO_x hydrogenation; low-carbon alcohols; MOFs