文章编号: 1001-3555(2023)04-0331-11

"开放型蝶形"[2Fe2S] 化合物光催化产氢性能与机理探究

郑会勤^{1,2*},樊耀亭^{1*}

(1. 郑州大学 化学学院绿色催化中心, 河南 郑州 450001; 2. 河南财政金融学院 环境经济学院, 河南 郑州 450046)

摘要: 合成并表征了两个新的具有"开放型蝶形"结构的 [2Fe2S] 化合物 A 和 B; 并以 A 和 B 为催化剂、藻红 B 钠 盐 (EBS²⁻) 为光敏剂、三乙胺 (TEA) 为电子给体和质子源, 构建了一个均相光催化产氢体系. 结果表明: 体系在 pH 为 12, 体积比为 1 : 1 的 CH₃CN/H₂O 溶液中, 产氢活性最高, 经 4 h 可见光照射, 最大产氢量分别为 156.1 μ mol (37.9 TON vs. A) 和 18.4 μ mol (TON 4.6 vs. B); 催化剂中含有质子捕获位点, 有利于形成产氢活性中间体 H₂-Fe₂S₂(η^2 -H²-Fe^{II}Fe^I) 物种, 从而提高催化剂的产氢活性. 在当前的体系中, 还原态的 Fe^IFe⁰ 物种通过^{1*} EBS²⁻转移到 Fe^IFe^I 中心上, 然后再经历一个 EECC (化合物 A) 或 ECEC (化合物 B), 形成产氢活性中间体 H₂-Fe₂S₂(η^2 -H₂-Fe^{II}Fe^I) 物种, 最终产生 H, 分子, 并使 Fe^IFe^I 物种再生.

关键词: [2Fe2S] 化合物; 光催化产氢; 电化学; 荧光淬灭; 机理 中图分类号: O641.4 文献标志码: A DOI: 10.16084/j.issn1001-3555.2023.04.002

光催化分解水制氢是将太阳能转化为化学能的 有效手段,其关键步骤是催化剂的选取,很多研究工 作者致力于催化剂的合成[1]. 微生物体内的氢化酶 是高效还原质子产氢的理想催化剂,关于用铁铁氢 化酶活性位点 [2Fe2S] 化合物作为光催化产氢的催 化剂的研究有很多,如孙立成课题组^[2]在 2008 年首 次报道了一个以 [Fe Fe]-氢化酶活性中心 [2Fe2S] 模型化合物 [(µ-SCH₂)₂ NCH₂C₆H₅] [Fe₂(CO)₅P(Pyr)₃] 为产氢催化剂, 三联吡啶钌 Ru(bpy),²⁺ 为光敏剂 (PS), 抗坏血酸为电子给体和质子源的光催化产氢 体系,该体系在体积比为1:1的 CH₃CN/H₂O 溶液 中,经3h光照,光催化产氢转换数TON(turn over number)为 4.3. Wang 等^[3]将 Fe2S2 活性位点锚定 于水溶性的聚丙烯酸 (PAA) 侧链上制备了水溶性 PAA-g-Fe₂S,催化剂,并以 MPA-CdSe QDs 为光敏 剂, 抗坏血酸 (H₂A) 为质子源和牺牲电子给体构建 了一个聚合物基 [2Fe2S] 化合物水相光催化产氢体 系,该体系的 TON 高达 27 000,其量子产率也高达 5%,此后,吴骊珠课题组^[4-6]报道了多例氢化酶模拟 物作为催化剂的均相或非均相光催化产氢体系,都

获得了很高的 TON. 近年来, 多个研究组利用不同 的方法, 改性氢化酶活性中心的光催化产氢效果和 稳定性, 如高分子聚合物、凝胶、分子膜基、金属 有机框架 (MOF)、半导体杂合等改善催化体系的 活性, 取得了不同程度的进展. 上述研究工作在光催 化产氢领域中都相当耀眼.

文献中所报道的氢化酶模型化合物,一般采用 含有两个巯基的柔性或刚性配体(如图1所示),形 成的化合物由于具有较大的空间位阻,不利于光敏 剂到催化中心 Fe^lFe^l的电子转移.我们采用单巯基 配体,合成了两个新的"开放型蝶形"[2Fe2S]羰基 化合物 A 和 B,开放型结构有利于减小配体对化合 物中心原子的空间位阻,使光敏剂到金属中心的电 子传递更加容易,试图提高产氢效率.构建了以 A 和 B 为产氢催化剂的均相光催化产氢体系,优化了 产氢参数,并进一步探究了可能的电子转移机理.

1 实验部分

1.1 仪器和试剂

我们所用的 Fe(CO)5 购于兰州化物所, 所用的

收稿日期: 2023-02-21;修回日期: 2023-03-23.

基金项目: 国家自然科学基金项目 (No.21171147); 河南省青年骨干教师项目 (No.2020GGJS266); 河南省高等学校重点科研项目 (No.21B150001) (National Natural Science Foundation of China (No. 21171147); Henan Young Backbone Teachers Project (No.2020GGJS266); Key Scientific Research Projects of Colleges and Universities in Henan Province (No.21B150001)).

作者简介:郑会勤 (1980-), 女, 博士, 副教授, E-mail: zhenghuiqin2000@163.com(Zheng Hui-qin(1980-), Female, Doctor, Associate Professor, E-mail: zhenghuiqin2000@163.com).

^{*} 通信联系人, E-mail: zhenghuiqin2000@163.com; yt.fan@zzu.edu.cn.

图 1 文献中常见的 [2Fe2S] 化合物结构及我们合成的化合物 A 和 B 的结构

Fig.1 Common structures of [2Fe2S] compounds in the literature and the structures of compounds A and B synthesized in the present

其他试剂均为分析纯度,并通过商业渠道购买,化合物A和B均在无水无氧条件下合成.采用以下仪器进行分析测试:用 Nicolet IR-470型红外光谱仪(KBr压片,400~4000 cm⁻¹范围内摄谱)测试红外光谱;用上海美谱达UV-1800PC型紫外可见分光光度计测试紫外光谱;用意大利FISONS公司的Carlo-Erba1106型元素分析仪进行元素分析;用德国Bruker DRX核磁共振仪(400 MHz)测试核磁;用上海申科 pHS-25 酸度计测试 pH;用上海辰华电化学工作站 CHI630B测定循环伏安;用日本日立HITACHI F-4500荧光光谱仪测定荧光淬灭;光催化产氢光源为北京泊菲莱公司的PLS-SXE300/300UV型氙灯;氢气产量测定采用Agilent 4890D气相色谱仪.

1.2 目标化合物 B 的晶体结构

化合物 B的晶体数据采用 Bruker SMART APEX CCD 衍射仪 (带有石墨单色器) 收集. 选取合 适的单晶样品,在 20 ℃下用 Mo-Kα射线 (λ = 0.071 073 nm) 和ω扫描方式收集数据,用 SAINT 程序进行数据还原,并对 Lp 因子进行了强度校正. 分子结构由直接法解出,用 SHELXTL 全矩阵最小 二乘法精修,所有的非氢原子采用各向异性热参数 精修.所有计算均使用 SHELXL-97 程序^[7]完成.化 合物 A 的晶体数据已提交剑桥晶体学数据中心 (Cambridge Crystallographic Data Center, CCDC)进 行注册,获得的 CCDC 号为 978354. 晶体数据和收 集晶体数据时的参数如表 1 所示.

1.3 化合物 A 和 B 的合成

化合物 A 的合成: 将 Fe₃(CO)₁₂ (0.9 g, 1.8 mmol) 和 2-巯基苯并咪唑 (MBD, L₁) (0.57 g, 3.8 mmol) 置 于三口烧瓶, 加入 25 mL 干燥的 THF, 氮气保护下 将混合液回流搅拌 3 h. 反应液冷却到室温, 过滤除 去未反应的固体物质, 收集滤液, 旋蒸除溶剂得黑色 固体粗产品, 经硅胶柱分离 (CH₂Cl₂ : C₆H₁₄ = 5 : 1

表 1	化合物	B	的晶体实验数据	

Parameter	Complex A				
Empirical formula	$C_{20}H_{14}O_6S_2Fe_2$				
Formula weight	526.15				
Temperature /°C	20(2) °C				
Wavelength /nm	0.071 073 nm				
Crystal system	Triclinic				
Z	2				
Space group	P-1(2)				
a /nm	0.774 14(4)				
b /nm	0.945 57(5)				
c /nm	1.589 85(9)				
α/(°)	105.195(5)				
β/(°)	97.205(4)				
γ/(°)	95.667(4)				
Volume /(nm ³)	1.103 64(10)				
$/(\mu \bullet \mathrm{mm}^{-1})$	5.896				
Density $/(g \cdot cm^{-3})$	1.583				
Goodness-of-fit	1.117				
R ₁ , wR ₂	0.045 5, 0.049 6				
R_1 , w R_2 (all data)	0.067 8, 0.054 1				

作为洗脱剂), 收集红色谱带, 除溶剂并干燥后得紫红 色固体 0.76g, 产率为 67%. 元素分析 C₂₀H₁₀N₄O₆Fe₂S₂: C, 41.55%; H, 1.74%; N, 9.69%; Found: C, 41.85%; H, 1.89; N, 9.83%; ¹HNMR (CDCl₃): δ7.12-7.59 (8H), 5.84 (2H); IR: CO: 2 073, 2 037, 1 994 cm⁻¹.

化合物 B 的合成:将 1.8 g Fe₃(CO)₁₂ (3.6 mmol) 和 0.94 g(3.8 mmol) 二苄基二硫醚 (L₂) 加入三口瓶 中,并以 20 mL 干燥的四氢呋喃作溶剂,将混合物 在氮气保护下回流搅拌 4 h, 后处理方法与化合物 A 同, 最后得到 1.5 g 红色固体, 其产率为 79.3%. 元 素分析 C₂₀H₁₄O₆Fe₂S₂: C, 45.65%; H, 2.69%; Found: C, 47.21%; H, 2.86%; ¹HNMR (CDCl₃): 7.436 (10H, Ph), 3.668 (2H, -CH₂-), 3.259 (2H, -CH₂-), IR: CO: 2 073, 2 036, 1 993 cm⁻¹. 晶体数据和收集晶体 数据时的参数如表 1 所示.

1.4 光催化产氢

光催化反应在一个 60 mL 的石英反应器中进 行.反应时固定反应液为 20 mL,以化合物 A 或 B 为催化剂,藻红 B 钠盐 (EBS²⁻)为光敏剂 (PS), 三 乙胺 (TEA) 为牺牲剂和电子给体.光化学反应前, 为使溶液均匀,将反应液超声处理 30 min,氮气保 护下进行光催化反应,反应过程中通冷凝水维持体系的温度为 25±1 ℃,反应液经 300 W Xe 灯照射 (420 nm 滤光片滤去紫外光),气相色谱检测生成的 氢气浓度 (GC, Agilent 4890D), 排水法检测生成的 气体体积.

2 结果与讨论

2.1 化合物 B 的晶体结构

化合物 B 的晶体结构见图 2, 部分键长键角数 据列于表 2.

如 图 2 和表 2 所示, 化合物 B 的两个 Fe 原子 被两个桥式 S 原子, 1 个 Fe 原子和 3 个 CO 包围,

图 2 化合物 B 的分子结构图 (30% 椭球率), 略去氢原子

Fig.2 The molecular structure of compound B with 30% probability level ellipsoids, hydrogen atoms are omitted for clarity

表 2 化合物 B 的部分键长和键角

Tuble 2 Deletted Dona Delignib and Thigleb for compound D	Table 2	Selected	Bond	Lengths	and A	ngles	for	compound	B
---	---------	----------	------	---------	-------	-------	-----	----------	---

Bond lengths	d/nm	Bond lengths	d/nm
Fe1—S1	0.225 88(9)	Fe2—S1	0.225 83(9)
Fe1—S2	0.226 39(10)	Fe2—S2	0.226 91(10)
Fe1—Fe2	0.252 45(6)	01—C1	0.113 1(4)
Fe2—C6	0.179 7(4)	S1—C7	0.183 8(3)
C7—C8	0.150 7(4)	S2—C14	0.184 3(3)
Bond	Angles/(°)	Bond	Angles/(°)
S1—Fe1—S2	8.092(3)	Fe2—S1—Fe1	6.796(3)
S1—Fe1—Fe2	5.601(2)	Fe1—S2—Fe2	6.769(3)
S2—Fe1—Fe2	5.625(3)	C15—C14—S2	11.09(2)
S1—Fe2—S2	8.082(3)	C8—C7—S1	10.98(2)
S1—Fe2—Fe1	5.603(2)	O1—C1—Fe1	17.79(4)
S2—Fe2—Fe1	5.606(2)		

Fe 原子的配位多面体是 3 个羰基在面上的八面体 结构, 其 [2Fe2S] 骨架呈现出"开放型蝶形"结构, 配 体中的苯环恰如蝴蝶的双翅. Fe(1)—Fe(2) 的键长 为 0.252 45(6) nm, 稍长于文献报道的 [2Fe2S] 化合 物 (μ-pdt) [Fe(CO)₃]₂ (0.251 0(11) nm) 的键长^[8]; 另 一方面, Fe1 原子到两个桥连 S 原子的键长分别为 0.225 88 和 0.226 39 nm, 该值接近于文献报道的 [2Fe2S] 化合物 (μ-pdt) [Fe(CO)₃]₂ 相应 Fe—S 原子 的键长 (0.224 9~0.225 4 nm)^[8], 但明显长于 Fe2—S (0.225 83 和 0.226 91 nm) 的键长; 此外, C—O 键长 在 0.113 1(4)~0.115 3(4) nm 之间, Fe—C 的键长在 0.177 5 (4)~0.181 7(4) nm 之间, 该值也接近于文献 报道值, 如化合物 (μ-pdt) [Fe(CO)₃]₂, C—O 键长在 0.113 0~0.114 1 nm 之间, Fe—C 键长在 0.179 7~

2.2 光催化产氢

以目标化合物 A 为产氢催化剂, TEA 为牺牲剂 和电子给体, EBS²⁻ 为光敏剂, 系统考查了 CH₃CN/H₂O 的比例、TEA 的浓度、pH 水平对体系产氢活性的 影响, 并在最优的条件下比较了化合物 A 和 B 的产 氢活性.

2.2.1 CH₃CN/H₂O比例的影响

考查了几种不同比例的 CH₃CN/H₂O 溶剂对催 化剂 A 和 B 的产氢活性的影响.

产氢时催化剂 A 和光敏剂 EBS²⁻的浓度分别 为 2.0×10^{-4} 和 4.0×10^{-4} mol·L⁻¹, TEA 的浓度为 10%, 光照 4 h, 产氢结果如图 3 所示. 由图 3(a) 可知, 体 系的产氢活性随着 CH₃CN: H₂O (v:v) 的比例由

图 3 光催化产氢参数优化 Fig.3 Optimization of photocatalytic H₂ parameters

1:2变化到 2:1 而逐渐降低,当 CH₃CN:H₂O (v:v)的比例为 1:1 时,出现最大产氢量,为 123.8 μmol (31.0 TON vs. A).当 CH₃CN:H₂O (v:v)的比例为 2:1 和 1:2 时,在上述同样的产 氢条件下,产氢量分别为:76.9 和 50.4 μmol,而催 化剂 B 在 3 种比例的溶剂中都表现出较低的产氢 活性,故在后续优化其他条件时,选择 A 为催化剂. 上述结果表明,溶剂的比例对 3 组分光催化产氢体 系的活性有重要影响,这种现象可能是因为溶剂的 性质如极性、介电常数和扩散系数等对光催化反应 有重要的影响^[9].

2.2.2 TEA 浓度的影响

体系的产氢活性受牺牲剂浓度的影响.考察了 不同浓度的 TEA 作为牺牲剂的产氢情况,产氢条 件: A 和 EBS²⁻ 的浓度分别为 2.0×10^{-4} 和 4.0×10^{-4} mol·L⁻¹,溶剂为 CH₃CN/H₂O (1:1, v:v),光照时 间为 4 h. 如 图 3(b) 所示, TEA 的浓度由 2.5% 增加 到 12.5%,体系的产氢活性呈现先增大后减小的趋 势,最大值出现在 TEA 的浓度为 10% 时,经 4 h 光 照,最大氢产量达 123.8 µmol (31.0 TON vs. A).这 可能是由于光敏剂 EBS²⁻被可见光激发形成单重激 发态的^{1*}EBS²⁻ (经过系间窜越形成^{3*}EBS²⁻) 和光生 空穴,光生空穴迅速将 TEA 氧化为 TEA⁺• 阳离子 自由基,该快速的还原过程使得三重激发态^{3*}EBS²⁻ 能迅速地接受从 TEA⁺• 阳离子自由基转移过来的 第 2 个电子,这一现象与文献报道的一致^[10]. 2.2.3 溶液的 pH 的影响

溶液的 pH 水平对光催化体系产氢活性也有显 著的影响.我们探究了体系在不同 pH 水平溶液的 产氢效果,其结果如图 3(c) 所示.所用催化剂 A、 EBS²⁻及TEA的浓度分别为 2.0×10⁻⁴、4.0×10⁻⁴ mol·L⁻¹和10% (v:v), CH₃CN/H₂O的比例为1:1 (v:v). 由图 3(c) 可知, 在所考察的 pH 范围内, 当 pH=12时,体系的产氢活性最高,光照4h获得的氢 气达峰值,为156.1 µmol.当 pH 偏离这一水平时, 产氢量均有不同程度的减少,这可能是因为25℃ 时, TEA的 pKb 为 3.99, 当 pH 在 11.01 或在 3.99 附 近时,大部分的 TEA 以分子形式存在^[11],但在 pH 值较低的溶液里,如 pH=9 时,体系的氢离子浓度较 高, TEA 更容易质子化, 从而失去部分给电子能力; 相反地,在 pH 值较高的溶液里,如 pH=13 时,体系 的氢离子浓度较低,不利于活性中间体 HFe^{ll}Fe^l 的 形成,说明调节溶液的 pH 水平在一个合适的值,有

利于产氢活性的提高.

2.2.4 催化剂结构的影响

为了考察催化剂结构对产氢活性的影响,分别 以 2.0×10⁻⁴ mol·L⁻¹ 的 A 或 B 为催化剂,在以下相 同的产氢条件下进行产氢实验: EBS²⁻ 为 4.0×10⁻⁴ mol·L⁻¹, CH₃CN/H₂O 为 1:1 (v:v), TEA 为 10% (v:v), pH 值均调节为 12, 光照 4 h. 如图 3(d) 所示, 以化合物 A 为催化剂的体系产氢量为 156.1 µmol (37.9 TON vs. A); 以化合物 B 为催化剂的体系只有 少量的氢气产生 (大约 18.4 µmol, 4.6 TON vs. B). 这可能归因于化合物 A 含有的 N 原子可作为质子 捕获位点,使之更容易形成产氢活性中间体氢化物 物种 (η^2 -H₂- Fe^{II}Fe^I)^[12].

2.2.5 催化剂产氢循环

稳定性是衡量催化剂性能的重要指标. 尝试做 了循环产氢实验, 产氢条件为上述优化的最佳产氢 条件, 结果如图 4 所示. 产氢 4 h 后, N₂ 气吹扫反应 体系, 再光照 4 h, 结果发现体系中仅有微量的氢气 产生; 在另外 3 组平行实验中分别补加初始量的光 敏剂 EBS²⁻, 初始量的催化剂 A 及初始量的光敏剂

和催化剂 **A**, N₂ 保护继续光照 4 h, 体系分别收集到 95.3、112.6 及 132.7 μmol 的 H₂; 表明分别补加光 敏剂和催化剂, 体系的产氢活性都会一定程度的恢 复, 恢复程度只有 60.2% 和 74.3%, 但当同时补加初 始量的光敏剂和催化剂时, 体系的产氢活性可恢复 87.6%,可能是因为此时 TEA 已经消耗了一部分, 不是最佳的浓度. 说明光敏剂 EBS²⁻和催化剂 A 在 光照下均会发生分解,反应过程应是一个协同产氢 过程,同时也说明我们合成的分子催化剂稳定性较 差,改进催化产氢体系的稳定性并提高产氢活性将 是后期的重要研究目标.

3 可能的电子转移机理

为了探明当前的3组分体系可能的电子转移过程,测试了 EBS²⁻ 的荧光光谱、牺牲剂 TEA 对

EBS²⁻的还原淬灭和化合物 A 和 B 对 EBS²⁻的氧化 淬灭、化合物 A 和 B 的电化学行为及质子酸存在 下其氧化还原峰的电流变化情况.

3.1 荧光淬灭

荧光淬灭实验中, 光敏剂 EBS^{2-} 的初始浓度为 1×10^{-5} mol·L⁻¹, 在 1:1的 CH₃CN/H₂O 溶液中, 分 别将不同浓度的 TEA 和不同浓度的目标催化剂 **A B** (浓度分别从0 增加到 2.0×10^{-3} 、 9.0×10^{-5} mol·L⁻¹) 加入光敏剂溶液中, 其还原淬灭和氧化淬灭结果如 图 5(a)-(c) 所示.

图 5 TEA 及化合物 A 和 B 对 EBS^{2-} (1×10⁻⁵ mol·L⁻¹) 的还原淬灭 (a) 和氧化淬灭 (b)–(c) Fig.5 Reduction quenching (a) of EBS^{2-} (1×10⁻⁵ mol·L⁻¹) by TEA and Oxidative quenching by A and B ((b)–(c))

如图 5(a) 所示, 在 554 nm 处 EBS²⁻出现了较强的荧光发射峰, 当将 TEA 加入到 EBS²⁻的溶液中时, 单重激发态的荧光发射强度(^{1*}EBS²⁻) 基本保持不 变, 表明在当前的光催化产氢体系中, 从 TEA 到 单 重激发态的光敏剂(^{1*}EBS²⁻)的直接电子转移是不可行的,这一结果间接证明了当前的光催化产氢体系的还原淬火只能由^{1*}EBS²⁻ 经系间穿越(ISC)产生的^{3*}EBS²⁻物种进行;然而,当将目标催化剂**A**和

B分别加入到 EBS²⁻的溶液中, EBS²⁻荧光强度都表现出不同程度的淬灭, 当向 EBS²⁻的溶液中分别加入 4.5 倍量的催化剂 **A**或 100 倍量的催化剂 **B**时, 其荧光强度分别被淬灭了约 78.7%(图 5(b))和 60.0%(图 5(c)). 两个催化剂的淬灭常数 (*k_q*)可分别根据 Stern-Volmer 方程 (1) 计算^[13].

$$I_0/I = 1 + k_a \tau_0[Q]$$
 (1)

这里 I_0 是不加淬灭剂时 EBS²⁻的荧光强度, I 为 加了淬灭剂时的荧光强度, τ_0 无淬灭剂时, EBS²⁻的 荧光寿命 ($\tau_0 = 75 \text{ ps}^{[14]}$), k_q 为淬灭速率常数, [Q] 为 淬灭剂的浓度. 根据方程 (1), 可计算出 k_{q1} 和 k_{q2} 分别 为 5.5×10¹⁴ 和 1.0×10¹³ L·mol⁻¹·s⁻¹, 说明该荧光淬灭 是双分子的静态淬灭; 同时, 较大的淬灭常数表明 **A** 和 **B** 对 EBS²的荧光均产生快速的淬灭,即从 ^{1*}EBS²⁻ 到催化剂 **A** 和 **B** 的第一个电子的转移均能 快速地进行.

3.2 A 和 B 的电化学性能

化合物 **A** 和 **B** 的电化学行为在乙腈溶液中测 试,测试条件: **A** 和 **B** 的浓度分别为 1×10^{-3} mol·L⁻¹, 支持电解质 *n*-Bu₄NPF₆ 的浓度为 0.05 mol·L⁻¹, 正 向扫描, 扫速为 100 mV/s; 以玻-碳电极做为工作电 极, Ag/AgCl 电极做为参比电极, 铂丝做为辅助电极 测试其电化学性能, 结果如图 6(a)-(c) 所示.

由图 6 可知,两个目标催化剂的循环伏安曲线 (CV)都出现两个不可逆的还原峰,分别为-0.50/ -1.19 V (A)和-0.70/-1.42 V (B),这两个还原峰分

图 6 EBS^{2-} (a) 和 A (b)、B (c) 的循环伏安曲线 (CV) Fig.6 Cyclic voltammetry (CV) grams of EBS^{2-} (a), A (b) and B (c)

別归属于从 Fe^lFe^l 到 Fe^lFe⁰ 和 Fe^lFe⁰ 到 Fe⁰Fe⁰ 的单 电子还原过程;同时,两个化合物也分别在+2.21 V (A),+0.13 V(B) 处出现了一个不可逆的氧化峰,该 氧化峰归属于 Fe^lFe^l 到 Fe^lFe^{II} 的氧化过程.值得注 意的是,化合物 A 和 B 的第一还原峰均比 Darensbourg 课题组报道的 (μ -pdt)[Fe(CO)₃]₂ 的第一还原 峰 (-1.34 V)更正^[15],表明它们更易从光敏剂接受 电子并将电子传递给质子最终产生氢气.由 EBS²⁻ 的氧化电位 (E_{ax}),化合物 A 和 B 的还原电位 (E_{red}) 及 EBS²⁻激发态的能量 E_{00} (E_{00} =hc/ λ_{00} , λ_{00} =542 nm, 则 E_{00} =2.29 eV),根据 Rehm-Weller 方程 (2)^[16],可 求出电子从光敏剂转移到催化剂时的自由能变化.

$$\Delta G^{\Theta} = E_{ox} - E_{red} - E_{00} \tag{2}$$

据方程 (2) 可以计算出从¹*EBS²⁻ 到 A 或 B (Fe^I Fe^I) 的第一个电子转移的自由能变化 k_q 分别为 -0.91 和 -0.71 eV, $k_q < 0$ 表明从单重激发态的 ¹*EBS²⁻ 到 A 和 B 的第 1 个电子的转移是热力学可 行过程; 从¹*EBS²⁻ 到化合物 A 和 B 的还原态的 Fe^I Fe^I(Fe^IFe⁰)电子转移的自由能变化 $I_0/I = 1 + k_q \tau_0[Q]$ 分别为-0.22 和 0.01 eV,表明从激发态的光敏剂到 催化剂 A 的第 2 个电子转移是热力学可行过程,但 到催化剂 B 是热力学不可行过程.此外,受电催化 产氢机理的启发,以不同浓度的 HAc 为质子源,支 持电解质 n-Bu₄NPF₆ 的浓度为 0.05 mol·L⁻¹, CH₃CN 作溶剂,正向扫描,扫速为 100 mV/s.测试了化合物 A 和 B 的峰电流变化以证明产氢活性中间体 H-Fe^IFe^I 的形成,其结果列于图 6. 如图 6 所示,当 HAc 的浓度由 0 增加到 10 mmol·L⁻¹,化合物 A 和 B 的第 1、2 还原峰的峰电流均增大,但第 2 还原峰 的峰电流增大更加明显,这种现象与文献报道的类 似化合物一致^[17-18].

鉴于从激发态¹*EBS²⁻ 到 化合物 A 和 B 的还 原态 (Fe^IFe⁰) 的第 2 个电子的转移分别为热力学不 可行和可行过程, 因此化合物 A 和 B 的产氢途径可 能存在差别, 以化合物 A 为催化剂的产氢体系, 可 能先经历两个电子转移过程 (electron-transfer process, E), 再经 历 两 个 质 子 转 移 的 化学 过 程 (chemical reaction process, C), 最终产生氢气分子, 即 EECC 类型的产氢机理 (图 7 (a)); 而化合物 B 则可能经历 两个 EC 过程, 最终生成氢气分子, 即 ECEC 类型 的产氢机理^[19] (图 7 (b)).

图 7 当向溶液中加入 HAc (0.0~10.0 mmol·L⁻¹) 时, 化合物 A (a) 和 B (b) (1×10⁻³ mol·L⁻¹) 的循环伏安图 Fig.7 CV grams of complex A (a) and B (b) (1×10⁻³ mol·L⁻¹) in the presence of HAc (0.0~10.0 mmol·L⁻¹)

上述结果表明, 当前的三组分体系可能的电子 转移机理可叙述为图 8: 基态光敏剂 EBS^{2-} 经可见光 照射后生成单重激发态的^{1*} EBS^{2-} , 然后经系间交叉 (Intersystem Crossing, ISC) 形成其三重激发态 ^{3*} EBS^{2-} , ^{3*} EBS^{2-} 接受 TEA 传递的电子形成其还原 态 EBS^{3-} ; 另一方面, 基态的 EBS^{2-} 也可以被 TEA 还原生成 EBS³⁻, 电子可以从^{3*}EBS²⁻ 经 path I 转移 到催化剂; 另一方面, 光生电子也可以由单重激发 态的光敏剂^{1*}EBS²⁻ 经 path II 转移到催化剂 Fe^IFe^I, 然后再经历一个 EECC (化合物 A) 或 ECEC (化合 物 B) 形成桥联的产氢活性中间体 η^2 -H₂-Fe^{II}Fe^I, 该 中间体很容易被质子化生成氢气, 并使催化剂 [Fe₂S₂] (即 Fe^lFe^l物种) 再生. 体系所需的质子由 TEA 降解的质子和水中的质子提供.

4 结论

合成了两个新的"开放型蝶形"[2Fe2S] 化合物 A和B,构建了以A和B为催化剂,EBS²⁻为光敏 剂,TEA为电子给体和质子源的三组分光催化产氢体 系,该体系在pH=12的体积比为1:1的CH₃CN/H₂O 溶液中,经可见光照射($\lambda > 420$ nm)4h,最大产氢量 分别是156.1 µmol (37.9 TON vs. A)和18.4 µmol (4.6 TON vs. B),荧光淬灭实验和电化学研究表明, 还原态的Fe¹Fe⁰物种通过^{1*}EBS²⁻将电子转移到 Fe¹Fe¹中心上,然后经历EECC(化合物A)或 ECEC(化合物B)形成桥联的产氢活性中间体H₂-Fe₂S₂(即 η^2 -H₂-Fe¹Fe¹)物种,化合物A表现出更高 的产氢活性,可能是A中含有较多的质子捕获位点, 有利于形成该活性中间体.我们的研究可为合成新 的分子类产氢催化剂及机理研究提供启发.

参考文献:

[1] a. Zhou W, Zhang W. Anchoring nickel complex to g-C₃N₄ enables an efficient photocatalytic hydrogen evolution reaction through ligand-to-metal charge transfer mechanism[J]. J Coll Interf Sci, 2022, 616(15): 791–

802.

b. Zuo Guo-fang(左国防), Yang Ben-qun(杨本群), Wang Peng(王鹏), et al. Study on CO₂ photocatalytic reduction based on porphyrin network single atom catalysts(卟啉网状结构材料负载单原子的光催化 CO₂ 还 原) [J]. J Mol Catal(China)(分子催化), 2022, **37**(3): 305-315.

c. Wang Yan-xin(王彦欣), Liu Ya-jing(刘亚靖), Tao Ran (陶 然), *et al.* Preparation and photocatalytic properties of K/Cl doped g-C₃N₄(K/Cl 掺杂 g-C₃N₄ 的制备及其光 催化性能研究)[J]. *J Mol Catal(China)*(分子催化), 2022, **36**(6): 561-570.

d. Di Lu(狄 璐), Zhao Sheng-nan(赵胜男), Li Xin-gang (李新刚). Photocatalytic selective oxidation of toluene over surfactant-modified ZnIn₂S₄(表面活性剂修饰 ZnIn₂S₄ 光催化甲苯选择性氧化)[J]. *J Mol Catal (China)*(分子催化), 2022, **36**(5): 413-424.

- [2] Na Y, Wang M, Pan J, et al. Visible light-driven electron transfer and hydrogen generation catalyzed by bioinspired [2Fe2S] complexes[J]. *Inorg Chem*, 2008, 47(7): 2805–2810.
- [3] a. Wang F, Liang W, Jian J, et al. Exceptional poly (acrylic acid)-based artificial [Fe Fe]-hydrogenases for photocatalytic H₂ production in water[J]. Angew Chem Int Ed, 2013, 52(31): 8134–8138.

b. Zhang Hao-yu(张灏昱), Guo Ji-wei(郭纪伟), Gong Jian-ren(宫建仁), et al. Study on the electronic structure modulation and photocatalytic performance of bismuth oxychloride photocatalysts(氯氧化铋催化剂的 电子结构调控及其光催化性能研究)[J]. J Mol Catal(China)(分子催化), 2022, **36**(5): 433–445.

c. Dong Wen-jin(董文锦), Chen Fu-shan(陈夫山), Deng Li(邓 理), *et al.* Recent advances on the photocatalytic regeneration of NAD(P)H (光催化 NAD(P)H 再生的 研究进展)[J]. *J Mol Catal(China)*(分子催化), 2022, **36** (3): 274-286.

d. Hou Hui-xia(侯慧震), Zhang Jing-yi(张靖恰), Cai Ping-long(蔡平龙), et al. Ultrasound-driven deposition of Au nanoparticles on CdS for efficient photocatalytic hydrogen evolution(超声驱动制备 Au/CdS 催化剂及 其高效光催化产氢)[J]. J Mol Catal(China)(分子催 化), 2022, **36**(2): 129–136.

- Becker R, Bouwens T, Schippers E, et al. Photocatalytic hydrogen generation by vesicle-embedded [FeFe]hydrogenase mimics: A mechanistic study[J].
 Chem Eur J, 2019, 25(61): 13921–13929.
- [5] Shi Y, Yang A, Cao C, et al. Applications of MOFs:

Recent advances in photocatalytic hydrogen production from water [J]. Coord Chem Rev, 2019, 390: 50-75.

- [6] Wang M, Han K, Zhang S, et al. Integration of organometallic complexes with semiconductors and other nanomaterials for photocatalytic H₂ production[J]. Coord Chem Rev, 2015, 287: 1-14.
- [7] Sheldrick G M. SHELXTL-Plus: A Program for Crystal Structure Determination(version 5.1)[M]. Bruker AXS: Madison, WI, 1998.
- [8] LyonE J, Georgakakil P, Reibenspies J H, et al. Carbon monoxide and cyanide ligands in a classical organometallic complex model for Fe-only hydrogenase[J]. Angew Chem Int Ed, 1999, 38(21): 3178-3180.
- [9] Zheng H, Rao H, Wang J, et al. Synthesis and photocatalytic H₂ photocatalysts based on [Fe Fe]-Hases model compound[J]. J Power Sour, 2015, 273: 1038-1047.
- [10] Probst B, Kolano C, Hamm P, et al. An efficient homogeneous intermolecular rhenium-based photocatalytic system for the production of H₂[J]. *Inorg Chem*, 2009, 48(5): 1836-1843.
- [11] Liu X, Li Y, Peng S, et al. Photosensitization of $SiW_{11}O_{39}^{8-}$ -modified TiO₂ by Eosin Y for stable visiblelight H₂ generation[J]. Int J Hydrogen Energy, 2013, 38(27): 11709-11719.
- [12] Li S, Chen W, Hu X, et al. Self-assembly of albumin and [Fe Fe]-hydrogenase mimics for photocatalytic hydrogen evolution [J]. ACS Appl Bio Mater, 2020, 3(4): 2482-2488.
- [13] Vincze L, Sandor F, Pem J, et al. Flash-photolysis studies of trans-[Cr cyclam(CN)₂] ClO_4 (cyclam = 1, 4, 7, 11tetraaza-cyclotetradecane) complex[J]. J Photochem Photobiol A-Chem, 1999, 120(1): 11-14.
- [14] Matczuk A, Bojarski P, Gryczynski I, et al. The influence of water structure on the rotational depolarization of fluorescence [J]. J Photochem Photobiol A-Chem, 1995, 90(2/3): 91-94.
- [15] Chong D S, Georgakaki I P, Mejia-Rodriguez R, et al. Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: Structure/ function relationships[J]. Dalton Trans, 2003, 2003(21): 4158-4163.
- [16] Rehm D, Weller A. Kinetics of fluorescence quenching by electron and H-atom transfer [J]. Isr J Chem, 1970, 8(2): 259-271.
- [17] Song L, Yang Z, Bian H, et al. Diiron oxadithiolate type models for the active site of iron-only hydroge-

nases and biomimetic hydrogen evolution catalyzed by $Fe_2(\mu$ -SCH₂OCH₂S μ) (CO)₆[J]. Organomet, 2005, 24(25): 6126-6135.

- [18] Capon J F, Gloaguen F, Schollhammer P, et al. Catalysis of the electrochemical H₂ evolution by diiron subsite models[J]. J Coord Chem Rev, 2005, 249(15/16): 1664-1676.
- [19] Mejia-Rodriguez R, Chong D, Reibenspies J H, et al. The hydrophilic phospha triazaadamantane ligand in the development of H₂ production electrocatalysts: Iron hydrogenase model complexes[J]. J Am Chem Soc, 2004, 126(38): 12004-12014.

Study of Photocatalytic Hydrogen Production Performance and Mechanism of 'Open Butterfly' [2Fe2S] Compounds

ZHENG Hui-qin^{1,2*}, FAN Yao-ting^{1*}

Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China;
College of Environmental and Economics, Henan Finance University, Zhengzhou 450046, China)

Abstract: Two new compounds **A** and **B** with 'open butterfly' structure [2Fe2S] compounds were synthesized and characterized. Then, a homogeneous photocatalytic hydrogen production system was constructed, among which complex **A** or **B**, EBS²⁻ and TEA was used as catalysts, photosensitizer, and electron donor & proton source, respectively. The results show that the hydrogen production activity is the highest in the CH₃CN : H₂O solution with a pH of 12 and a volume ratio of 1 : 1. The maximum hydrogen production is 156.1 µmol (37.9 TON, turn over number) *vs*. **A**) and 18.4 µmol (TON 4.6 *vs*. **B**) in 4 hours of visible light irradiation; the catalyst contains proton trapping sites, which are conducive to the formation of hydrogen-producing active intermediate H₂-Fe₂S₂ (η^2 -H₂-Fe^{II}Fe^I) species, thereby improving the hydrogen-producing activity. In the current system, the reduced Fe^IFe⁰ species is transferred from ^{1*}EBS²⁻ to the Fe^IFe^I center, and then undergoes an **EECC** (Compound **A**, electron-transfer process (**E**), Chemical reaction process(**C**)) or **ECEC** (Compound **B**) to form the hydrogenproducing the above active intermediate species, eventually producing H₂ molecules and regenerating the Fe^IFe^I species.

Key words: [2Fe2S] compounds; photocatalytic hydrogen production; electrochemistry; fluorescence quenching; mechanism