Vol.36, No.3 Jun. 2022

文章编号: 1001-3555(2022)03-0245-08

S 掺杂 BiOBr 的制备及其光催化固氮性能研究

葛建华1,2*,张 万1,丁修龙1,卫 洲1,李 佳1

(1. 安徽理工大学 地球与环境学院,安徽 淮南 232001;

2. 合肥综合性国家科学中心能源研究院(安徽省能源实验室),安徽 合肥 230031)

摘要:以硫脲、五水硝酸铋为前驱体,采用溶剂热法制备出 S掺杂 BiOBr光催化剂. 利用 XRD、SEM、XPS、UV-Vis DRS、光电化学性能等对所制备的光催化材料进行了一系列表征. 同时,在可见光照射下对 S掺杂 BiOBr进行光催 化固氮性能研究. 结果表明: S掺杂 BiOBr的晶体结构未发生改变,比表面积增大. 同时,形成的氧空位有利于吸附、活化 N_2 分子和促进光生载流子的迁移,进而提高其光催化固氮性能. 与 BiOBr相比, S掺杂 BiOBr的光催化产氨为 25.36 mg·L¹·h¹·g¹-ca, 是 BiOBr的 4.6倍. 最后,经 4次循环实验, S掺杂 BiOBr催化剂仍保持稳定的光催化固氮效率. 关键词: 光催化; 固氮; S 掺杂; BiOBr

中图分类号: 0643.32 文献标志码: A **DOI**: 10.16084/j.issn1001-3555.2022.03.005

氨作为现代化肥工业、有机化工工业的重要原料,为改变世界粮食生产和促进化学工业的发展发挥了重要作用. 然而,基于 Haber-Bosch法的合成氨工艺需在高温、高压下(300~550 ℃,15~25 MPa),利用铁基催化剂将 N₂还原为 NH₃. 同时,该工艺过程需要消耗大量的化石燃料,这将不可避免地造成大量温室气体的排放. 因此,鉴于全球化石燃料严重短缺、全球气候变化等问题,开发出高效、绿色和可持续的合成氨工艺成为研究者关注的重点[1-6].

近年来,利用太阳能光催化技术在温和条件下将N₂分子还原为NH₃倍受广大科研工作者的青睐^[7-9]. 1977年, Schnauzer首次报道了在紫外光照射下,Fe掺杂金红石型TiO₂具有光催化固氮性能.研究表明,光催化合成氨反应是在光照条件下,主要由吸附在光催化剂表面H₂O的氧化反应以及N₂分子活化还原反应构成^[2]. 其中,光生载流子的氧化还原能力和有效分离以及对N₂分子的活化能力与光催化材料的固氮性能密切相关.

当前, BiOBr作为一种新型的光催化材料, 由于 其独特的层状晶体结构和电子结构, 使其呈现出良 好的光催化性能, 因此极大地吸引了研究者们的关 注^[10-13]. 例如张礼知教授课题组从生物固氮的基本 过程中受到启发,以水作为绿色质子源,利用含有 O 空位的二维 BiOBr纳米片作为光催化剂,实现高效的可见光催化固氮^[14].研究表明,BiOBr纳米片表面 O 空位的局域电子可以大大增强催化剂表面对 N₂的吸附和活化,从而有利于光催化固氮活性的提高.

众所周知, S、O属同一主族元素, 有相近的化学性质. S元素掺杂到催化剂中, 会形成缺陷, 进而抑制其光生电子-空穴的复合; Wang等^[15]采用水热法制备了S掺杂的BiOBr, 相比于纯BiOBr, S掺杂的BiOBr表现出优越的双酚A降解性能. Liu等^[16]研究发现, S掺杂降低了BiOBr的能带间隙, 进而提高了光响应范围.

综上,为了提高BiOBr的可见光响应范围和光催化固氮活性,我们分别以硫脲为S源,硝酸铋为前驱体,采用溶剂热法制备出S掺杂的BiOBr光催化剂,采用XRD,SEM,XPS,UV-Vis DRS等手段对样品进行了一系列表征,并探究其光催化固氮性能.

1 实验原料及方法

1.1 实验原料

实验所用化学试剂: 溴化钾($KBr \ge 99.0\%$, 分析纯)、五水硝酸铋($Bi(NO_3)_3 \cdot 5H_2O \ge 99.0\%$, 分析

收稿日期: 2022-03-12; 修回日期: 2022-04-10.

基金项目: 安徽高校协同创新项目(GXXT-2021-017); 2020年度高校优秀人才支持计划项目(gxyq2020012);安徽自然科学基金(1808085ME139) (Collaborative Innovation Project of Anhui Universities(GXXT-2021-017); 2020 Outstanding University Talents Support Program(gxyq2020012); Anhui Natural Science Foundation(1808085ME139)).

作者简介: 葛建华(1982-), 男, 教授, 安徽宣城人. E-mail:gejianhua13@163.com(Ge Jian-hua(1982-), male, Professor, from Xuancheng, Anhui province).

^{*} 通信联系人, E-mail: gejianhua13@163.com.

纯)、硫脲($CH_4N_2S \ge 99\%$, 分析纯)、乙醇($C_2H_6O \ge 99.7\%$, 分析纯)、乙二醇($(CH_2OH)_2 \ge 98\%$, 分析纯)、丙三醇($C_3H_8O_3 \ge 99\%$, 分析纯)、1,3-丁二醇($C_4H_{10}O_2 \ge 99\%$, 分析纯)、四水合酒石酸钾钠

 $(C_4H_4O_6KNa\cdot 4H_2O \ge 99\%$,分析纯)以及纳氏试剂均 采购于阿拉丁生化科技股份有限公司.

1.2 实验器材

实验所用仪器及仪器相关信息列于表1中.

表 1 实验仪器

Table 1 Experimental apparatus

Name of the instrument	Type specification	Manufacturer	
The ozone machine	CFVG5	Beijing Shangmeishuimei Environmental Protection High-tech	
		Co., Ltd	
Xenon lamp	PLS-SXE300/300UV	Beijing Perfectlight TechnologyCO., Ltd	
Air compressor	YT-301C	Chengdu Rankuum Machinery Ltd	
Magnetic Stirrer	Feb-78-2	Nantong Zhengmingci Driving Machinery Co.,Ltd	
Ultraviolet-visible Spectrophotometer	UV-560B	Shanghai Onlab Instruments Co., Ltd	
Centrifugal machine	TDL-4	Hunan Kaida Science Instrument Co., Ltd	
Vacuum pump	SHZ-D(III)	Zhengzhou Biochemical Instrument Co., Ltd	
Ultrasonic Cleaner	KQ-50DB	Zhangjiagang hna Ultrasonic Electric Co., Ltd	
Drying cabinet	101-3A	Shanghai Zhe ti Machinery Manufacturing Co., LTD	
X-Ray Diffractometer	Smartlab SE	Rigaku Corporation	
Scanning Electron Microscope	FlexSEM1000	HitachiLimited	
X-Ray photoelectron spectroscopy	ESCALAB 250Xi	ThermoFisher Scientific	
FTIR Spectrometer	Nicolet is 50	Thermo Fisher Scientific (China) Co.,Ltd	
Ultraviolet absorption Spectrometer	Lambda 950	PerkinElmer	
Electrochemical workstation	CHI760E	Shanghai Chenhua Instrument Co., Ltd	

1.3 BiOBr的制备

分别称取 $0.001 \, \text{mol}$ 的 KBr、 $Bi(NO_3)_3 \cdot 5H_2O$ 超声溶解于 $20 \, \text{mL}$ 乙二醇中,再将上述乙二醇溶液混合,磁力搅拌 $0.5 \, \text{h}$,转入反应釜,在 $160 \, ^{\circ}$ 下反应 $12 \, \text{h}$,冷却,离心,用去离子水及无水乙醇洗涤,烘干备用.

将 0.001 mol 的 $Bi(NO_3)_3 \cdot 5H_2O$ 超声溶于 20 mL 乙二醇.同时,在 20 mL 乙二醇中分别加入 0.001 mol 的 KBr 和一定量的硫脲.将上述乙二醇溶液混合均匀,倒入 100 mL 高压反应釜中,在 $160 \text{ $^\circ$}$ 下反应 12 h,冷却后,用去离子水及无水乙醇洗涤后,烘干备用.其中,以 Bi:S 的摩尔比来确定 CH_4N_2S 的投加量,通过预实验,确定了 CH_4N_2S 加入的量,Bi:S 投加量摩尔比为 10:1,催化剂记作 S-xBiOBr.

1.4 光催化固氮实验

在250 mL自制的石英反应器中进行光催化固氮反应.在室温和常压下,分别向反应器中加入0.05g光催化剂、一定量捕获剂和200 mL去离子水.以300 W氙灯为光源,采用空气泵向反应器中提供氮

气. 磁力搅拌, 使 N_2 分子在催化剂表面达到吸附平衡. 打开光源, 定时取样, 离心, 取上清液待测. 其中, 采用纳氏试剂分光光度法(HJ-535-2009), 测定样品中的氨氮的含量. 亚硝酸盐氮分光光度法(HJ/346-GB 7493-87)、硝酸盐氮紫外分光光度法(HJ/346-2007)检测样品中的亚硝酸盐氮和硝酸盐氮含量.

2 结果与讨论

2.1 XRD分析

由图1可知, BiOBr与S掺杂BiOBr样品的衍射峰分别与四方晶系的BiOBr(PDF#73-2061)的特征衍射峰位置相一致,且无其他明显杂峰.说明S掺杂后并没有改变BiOBr材料的晶型结构.同时,S掺杂的BiOBr表现出良好的结晶性.其中,10.91°、25.36°、31.77°、32.24°、46.45°、57.12°和77.26°处的衍射峰,分别对应于(001)、(101)、(102)、(110)、(200)、(212)和(310)晶面^[17].此外,与BiOBr材料相比,S掺杂BiOBr存在不同程度的峰宽化现象,可推

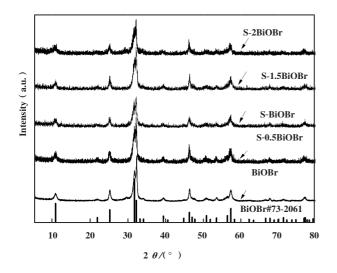


图 1 催化剂的 XRD 图谱 Fig.1 XRD Patterns of catalysts

断S掺杂制备的BiOBr材料的粒径变小.

2.2 SEM 分析

如图2所示, BiOBr、S-BiOBr的SEM形貌均呈花球状. 其中, 构成花球的不规则纳米片的厚度大约为10 nm. 同时, 相对于BiOBr, S-BiOBr光催化材料(如图2(b)、(c)、(d)所示)的纳米片边缘锯齿状明显, 这可能是由于S-BiOBr的(110)晶面的生长被抑

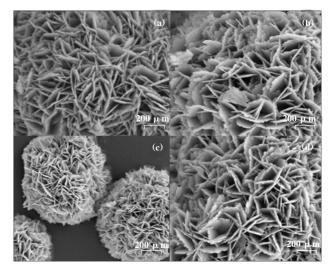


图 2 (a)BiOBr 和(b),(c),(d)S-BiOBr的SEM表征图 Fig.2 SEM of (a)BiOBr and (b),(c),(d)S-BiOBr

制,从而更有利于形成交替排列的层状结构,该结构能够有效增加体系的光电催化固氮反应效率^[15].

2.3 XPS分析

由图 3a 可知,本实验所制备的 BiOBr 和 S-BiOBr 材料主要由 Bi、O 和 Br 3 种元素构成. 如图 3(b)所示, Br 3d 的 XPS 能谱可以分为两个峰,其结合能分别为 68.5 和 69.5 eV,表明 Br 元素是以 Br 形式存在;由图

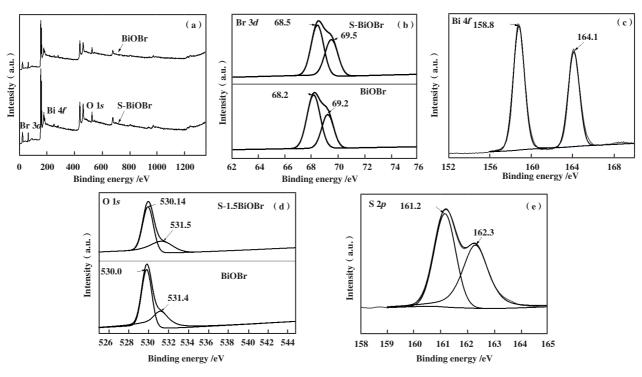


图 3 催化剂的 XPS 图谱 Fig.3 XPS spectra of catalysts (a): Survey diagram; (b): Br 3d; (c): O 1s; (d): Bi 4f; (e): S 2p

3(d) 可知, Bi 4f的 XPS能谱可以分为两个峰, 其结合能分别为 158.7和 164.1 eV, 表明 Bi 元素是以 Bi³ 的形式存在[3-4]; 由图 3(e) 可知, O 1s 的 XPS能谱可以分为两个峰, 其结合能分别为 530.1、531.5 eV, 表明 O元素是以 Bi – O 和催化剂表面吸附的 O₂ 及 H₂O 的形式存在; 同时, 相对于 O 1s 在 530 eV 处的信号峰, S-BiOBr 所对应的信号峰要弱一些, 表明有少量的 S元素掺杂到 BiOBr 中; 由图 3(e) 可知, S元素掺杂进 BiOBr 中, S 2p 的 XPS能谱可以分为两个峰, 其结合能分别为 161.2和 162.3 eV, 表明 S元素是以 Bi—S键的形式存在. 由于 S、O元素属同一族, 化学

特性上有一定的相似性, S元素的掺杂可以在BiOBr 中形成缺陷, 进而有利于 N_2 分子的吸附和活化以及抑制光生电子-空穴的复合^[15].

2.4 UV-Vis分析

BiOBr、S-BiOBr光催化剂的紫外漫反射光谱 (UV-Vis DRS) 如图 4 所示,由图 4(a)可知,BiOBr、S-BiOBr的吸收边沿分别位于430和455 nm附近,对应的能带间隙分别为2.78和2.59 eV.表明S掺杂BiOBr使其禁带宽度变窄,可见光响应能力得到提升,进而有利于提高光催化剂在可见光区的固氮能力.

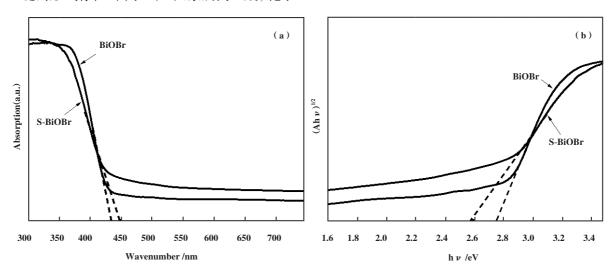


图 4 催化剂的 UV-Vis DRS 谱图 Fig.4 UV-Vis DRS spectra of catalysts

2.5 比表面积和孔径分析

由图5可知、BiOBr和S-BiOBr的等温线(IV型)

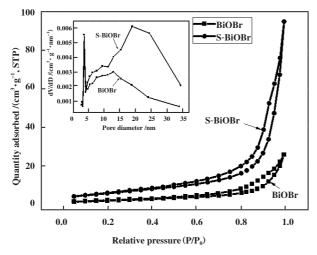


图 5 催化剂的氮气吸附 - 解吸等温线及相应孔径分布曲线 Fig. 5 Nitrogen adsorption-desorption isotherms and corresponding pore size distribution curves of catalysts

和滯回线(H3型) 均相同,存在介孔结构.同时,采用 Brunauer-Emmett-Teller 方法计算的 S-BiOBr 的比表面积约为31.13 m^2/g ,是 BiOBr(~15.38 m^2/g)的表面积的2倍多,S掺杂提高了BiOBr 材料的比表面积,进而会提供更多的光催化固氮反应活性位点.此外,S-BiOBr 的孔容为0.22 m^3/g ,比 BiOBr 的孔容(~0.08 cm^3/g)大,进而有利于光催固氮化反应的进行.

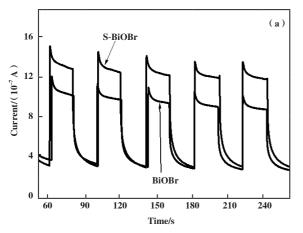

表2 BiOBr和S-BiOBr的孔径、孔容及比表面积

Table 2 Pore size, pore volume and specific surface area of

BiOBr and S-BiOBr					
Samples	Pore diameter /nm	Pore volume /(cm ³ •g ⁻¹)	Surface area $/(m^2 \cdot g^{-1})$		
BiOBr	13.13	0.08	15.38		
S-BiOBr	19.02	0.22	31.13		

2.6 光电流电化学性能分析

为探究样品中光生载流子的迁移行为,测试了BiOBr和S-BiOBr的瞬态光电流响应曲线.由图6(a)可知,相比于BiOBr, S-BiOBr的瞬态光电流强度

更强,说明其光生载流子的分离能力也更强.同时 BiOBr呈现出比较明显的瞬态光电流尖峰,表明界 面电荷发生了严重的复合.然而,在S掺杂后,瞬态 尖峰大大减弱,表明在S掺杂作用下,光生载流子得

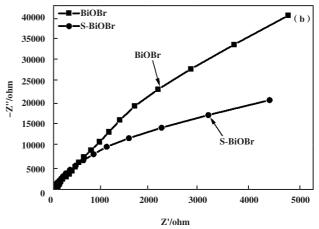


图6 催化剂的瞬态光电流响应曲线和EIS奈奎斯特曲线

Fig.6 Photocurrent response and nyquist plots for catalysts

到了有效的转移.除此之外,BiOBr、S-BiOBr的电化学交流阻抗(EIS)图谱如图6(b)所示.相比BiOBr、S-BiOBr光催化材料半圆的半径要小,表明其具有更快的界面电荷转移能力和电荷分离效率,进而使其具有更好的光催化性能.

3 光催化固氮性能的研究

3.1 不同体系下光催化固氮的影响

探究了不同体系对固氮效果的影响.由图7可知,在没有光照、催化剂、捕获剂条件下,体系中NH₄+的浓度为零.当在光催化剂、捕获剂以及光照

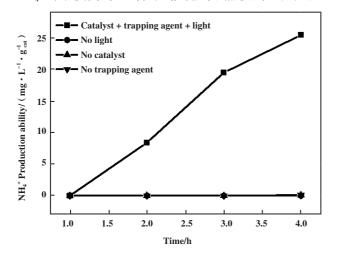


图 7 不同的光催化固氮体系

Fig.7 Different photocatalytic nitrogen fixation systems

共同作用下, NH_4 *的产率显著提高.即光催化固氮反应体系中,光照、光催化剂和捕获剂缺一不可.同时,进一步检测了S掺杂BiOBr光催化体系中产物的种类.由图8可知,S掺杂BiOBr光催化固氮体系中的产物以 NH_4 *为主, NO_2 ⁻和 NO_3 ⁻的产量几乎检

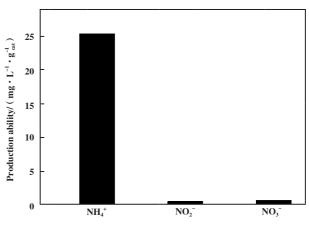


图 8 NH₄⁺, NO₂⁻和 NO₃⁻的产量

Fig.8 Productionson of NH₄⁺, NO₂⁻ and NO₃⁻

测不出来.因此,在后续光催化固氮反应中不再对样品中的 NO^{2-} 和 NO^{3-} 进行检查.

3.2 S掺杂量对光催化固氮影响

在氙灯光源照射下,探究了不同S掺杂量对BiOBr催化剂的光催化固氮性能的影响.由图9可知,随光照时间增加,不同S掺杂BiOBr光催化剂的氨氮产量单调上升.其中,S-BiOBr的光催化固氮效果

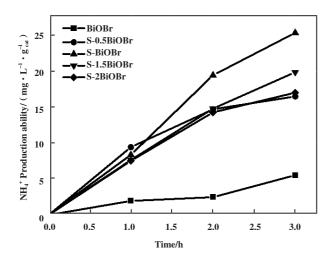
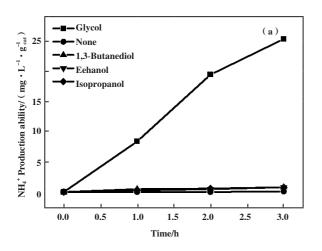



图 9 不同光催化剂的光催化固氮效果

Fig.9 Effect of different photocatalysts on nitrogen fixation

最佳, 其固氮量为25.36 mg·L⁻¹·h⁻¹·g⁻¹_{cat}, 约为BiOBr 的4.6倍. 这是由于S元素掺杂在BiOBr体系中形成部分Bi—S键, 产生大量氧空位, 氧空位有利于活化氮气分子, 进而会提高其光催化固氮活性. 然而, 过量的S掺杂会抑制BiOBr的(110)晶面, 进而会抑制其光催化固氮性能^[17].

3.3 捕获剂种类对光催化固氮效果的影响

实验探究了乙二醇、乙醇、异丙醇和1,3-丁二醇等4种捕获剂对S-BiOBr光催化固氮性能的影响,由图10所示,相对于其他3种捕获剂,将乙二醇作为捕获剂,S-BiOBr的光催化固氮最好.由图10(b)可知,当光照时间为3h、乙二醇浓度为1%(体积分数)时,光催化产氨氮量达25.36 mg·L⁻¹·h⁻¹·g⁻¹_{cat}.然而,当乙二醇的投加量分别为1.5%、2%(体积分数)

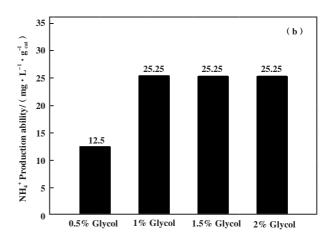


图 10 捕获剂的种类和浓度对固氮效果的影响

Fig.10 Effect of type and concentration of capture agent on nitrogen fixation

时,光催化产氮量为25.25 mg·L⁻¹·h⁻¹·g⁻¹_{cat}.即S掺杂BiOBr样品的光催化产氨效率先随着牺牲剂浓度的增加而提高,达到最高点后再加大牺牲剂的浓度,光催化产氨效率反而会略微降低.这可能是因为高浓度牺牲剂溶液会影响催化剂表面的光强度,进而影响其光催化固氮效率.

3.4 光催化剂稳定性实验

考察光催化的稳定性. 选用光催化活性最佳的 S-BiOBr样品,测试条件与之前的光催化固氮性能测试完全相同. 由图 11 可知,随着反应的进行,光催化反应体系中氨氮的产量随时间增加而升高. 即经过4次循环后,催化剂的光催化固氮活性没有明显的降低. 说明 S-BiOBr在光催化固氮反应体系中具有较好的稳定性.

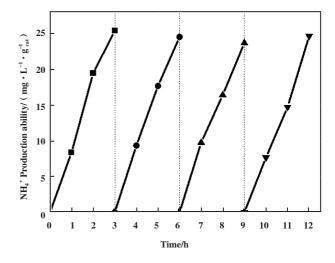


图 11 催化剂循环实验

Fig.11 Catalyst cycling experiment

4 结论

- 4.1 将硫脲作为S源,采用溶剂热法,将S元素掺杂到BiOBr中,S掺杂BiOBr仍呈微花球状,其比表面积是BiOBr的2倍多.同时,S元素掺杂在BiOBr中形成Bi—S键,延长了光生载流子的寿命,进而提高其光催化固氮性能.
- **4.2** 不同 S 掺杂量均能提升 BiOBr的光催化固氮性能.其中,当 Bi/S 摩尔比为 10:1 时,固氮效果最佳,是 BiOBr的 4.6 倍.
- **4.3** 与其他捕获剂相比,当乙二醇作为捕获剂时,S-BiOBr的光催化固氮最好.此外.循环实验表明,S-BiOBr光催化剂具有良好的稳定性.

参考文献:

- [1] Xue Xiao-lan, Chen Ren-peng, Yan Chang-zeng, et al.

 Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi₂MoO₆ and oxygen-vacancy-rich p-type BiOBr[J].

 Nanoscale, 2019, 11(21): 10439–10445.
- [2] Liu Jian-xin, Li Fei-fei, Lu Jiang-rui, et al. Atomically dispersed palladium-ethylene glycol-bismuth oxybromide for photocatalytic nitrogen fixation: Insight of molecular bridge mechanism [J]. J Coll Inter Sci, 2021, 603: 17-24.
- [3] Chen Xue, Zhang Xu, Li Yue-hua, et al. Transition metal doping BiOBr nanosheets with oxygen vacancy and exposed {102} facets for visible light nitrogen fixation[J]. Appl Catal B- Environ, 2021, 281: 119516.
- [4] Lan Meng, Zhang Nan, Dong Xiao-li, et al. One-step insitu synthesis of Bi-decorate-d BiOBr microspheres with abundant oxygen vacancies for enhanced photocatalytic nitroge-n fixation properties [J]. Coll Surf A-Phys & Eng Asp, 2021, 623: 126744.
- [5] Wang Jiang-peng, Fang Yao-xun, Zhang Wen-xuan, et al. TiO₂/BiOBr 2D-2D heterost-ructure via in-situ approach for enhanced visible-light photocatalytic N₂ fixation [J]. Appl Surf Sci, 2021, 567: 150623.
- [6] Kumar A, Krishnan V. Vacancy engineering in semiconductor photocatalysts: Implications in hydrogen evolution and nitrogen fixation applications [J]. Adv Funct Mater, 2021, 31(28): 2009807.
- [7] a. Shen Zhi-kai, Cheng Miao, Yuan Yong-jun, *et al*. Identifying the role of interface ch-emical bonds in activating charge transfer for enhanced photocatalytic nitrogen

- fixation of Ni₂P-black phosphorus photocatalysts [J]. *Appl Catal B-Environ*, 2021, **295**: 120274.
- b. Guan Yuan-hao(美元昊), Bai Jin(白金), Hu Shaozheng(胡绍争), *et al.* The effect of n-π* electronic transitions on the N₂ photofixation ability of phosphorus doped g-C₃N₄ synthesized by microwave treatment(微波法合成磷掺杂石墨相氮化碳催化剂及n-π*电子跃迁对其光催化固氮性能的影响) [J]. *J Mol Catal(China)*(分子催)), 2022, **36**(2): 180–189.
- [8] Song Mu-yao, Wang Li-jing, Li Jia-xin, et al. Defect density modulation of La₂TiO₅: An effective method to suppress electron-hole recombination and improve photocatalytic nitrogen fixation[J]. J Coll Inter Sci, 2021, 602: 748-755.
- [9] Niu Xiao-you(牛孝友), Jiang Shen-long(江申龙), Zhang Qun(张 群). Photocatalytic nit-rogen fixation mechanism of isoplasmon Molybdenum doped tutanium dioxide semiconduc-tor(等离激元钼掺杂二氧化钛半导体的光催化固氮反应机理研究)[J]. Chin J Chem Phys(化学物理学报), 2021, 34(4): 413–418.
- [10] Fan Guo-dong(樊国栋), Li Nan(李楠), Pan Qian-hong(潘谦宏), et al. Preparation and peoperties of BiOBr/NaNbO₃ composite photocatalyst(BiOBr/NaNbO₃ 复合光催化剂的制备及其性能研究)[J]. J Shanxi Univer Sci & Technol (China) (陕西科技大学学报), 2021, **39**(5): 97–104.
- [11] Li Dong-mei(李冬梅), Liang Yi-cong(梁奕聪), Zhuo Yong-qi(卓涌淇), *et al.* Synthesi-s and visible light catalytic performance of bismuth-modified BiOBr/g-C₃N₄ heterojunction photocatalysts(铋修饰BiOBr/g-C₃N₄异质结光催化剂合成及其可见光催化性能研究)[J]. *Chin J Environ Sci*(环境科学学报), 2021, **41**(3): 960–968.
- [12] Tang Xin-de(唐新德), Wang Zheng-rong(王正容), Liu Ning(刘 宁), et al. Preparation of heterojunction photocatalyst Bi₂O₄/BiOBr and visible light degradation of phenol(异质结光催化剂Bi₂O₄/BiOBr的制备及其可见光降解苯酚的性能研究)[J]. Techol Water Treat (China)(水处理技术), 2020, 46(3): 62-65.
- [13] Huang Yi-li(黄逸莉). Preparation, characterization and photocatalytic nitrogen fixation of BiOBr matrix composites(BiOBr基复合材料的制备、表征及其光催化固氮研究)[D]. Zhenjiang(镇江): Jiangsu University of Science and Technology(江苏科技大学), 2020.
- [14] Ai Zhi-hui, Wang Ji-lin, Zhang Li-zhi. Substrate-dependent photoreactivities of BiOBr nanoplates prepared at different pH values [J]. *Chin J Catal*, 2015, **36**(12): 2145–2154.

- [15] Wang Chu-ya, Zeng Qi, Zhu Guang-can. Novel S-doped BiOBr nanosheets for the enhanced photocatalytic degradation of bisphenol A under visible light irradiation [J]. Chemosphere, 2021, 268: 128854.
- [16] Liu Yang, Hu Zhuo-feng, Jimmy C Y. Photocatalytic degradation of ibuprofen on S-doped BiOBr[J]. *Chem-*
- osphere, 2021, 278: 130376.
- [17] Guo Wan, Qin Qin, Geng Lei, et al. Morphology-controlled preparation and plasmon-enhanced photocatalytic activity of Pt-BiOBr heterostructures [J]. J Hazard Mater, 2016, 308: 374-385.

Preparation of S Doped BiOBr Photocatalyst and Its Nitrogen Fixation Performance

GE Jian-hua^{1,2*}, ZHANG Wan¹, DING Xiu-long¹, WEI Zhou¹, LI Jia¹

(1. School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China;

2. Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, China)

Abstract: A series of S-doped BiOBr photocatalysts were synthesized using thiourea and Bi(NO₃)₃·5H₂O as precursors through solvothermal process, which were characterized by XRD, SEM, XPS, UV-Vis DRS, photoelectric property. Characterization results revealed that the S-doped BiOBr photocatalyst has identical crystal structure, larger specific surface area and higher photo-induced charge migration ability than that of BiOBr photocatalyst. These properties may contribute to adsorb, activate N₂ molecules and enhance the nitrogen photofixation activity. It was also found that the rate of NH₄⁺ production for N₂ photofixation of S-doped BiOBr could reached ~25.54 mg·L⁻¹·h⁻¹·g⁻¹_{cat}, which is approximately ~4.6 times higher than that of BiOBr. Moreover, after four cycle experiments, the S-doped BiOBr still has high nitrogen fixation efficiency.

Key words: photocatalysis; nitrogen fixation; S doping; BiOBr