Vol.35, No.1 Feb. 2021

文章编号: 1001-3555(2021)01-0031-09

用于巴豆醛液相选择性加氢的高性能 Ir/TiH,催化剂

郑万彬¹, 叶艳文¹, 胡一鸣¹, 汤 岑¹, 李艳明², 鲁继青^{1*} (1. 浙江师范大学 物理化学研究所 先进催化材料教育部重点实验室, 浙江 金华 321004; 2. 浙江师范大学 图文信息中心, 浙江 金华 321004)

摘要:在 Ir/TiH_2 催化剂上进行了巴豆醛液相选择性加氢反应,并研究催化剂还原温度对其反应行为的影响. 相比于 Ir/TiO_2 催化剂,相同反应条件下 Ir/TiH_2 催化剂的活性提高了 2 倍(80 ℃时巴豆醛转化率为 52%),且巴豆醇选择性大幅度提高(78%). 表征结果表明, Ir/TiH_2 催化剂表面富含的氧缺位和强的 H 活化能力是催化剂性能提高的主要原因. 此外, Ir/TiH_2 催化剂中 Ir 颗粒尺寸随催化剂还原温度的升高而增大,导致其本征活性降低,表现出明显的尺寸效应. 较小的颗粒尺寸有利于巴豆醛分子中 C=0 键加氢,从而提高了催化剂的反应性能.

关键词: α , β -不饱和醛; 选择性加氢; 氧缺位; H活化能力; 颗粒尺寸效应

 α , β -不饱和醇是重要的化工中间体,在香料、药物及其他精细化学品生产中有着广泛应用 $^{[1-2]}$ -工业上通过 α , β -不饱和醛与强还原剂如 NaBH₄和 LiAlH₄等反应制备不饱和醇,但生产过程中产生大量废水造成环境污染 $^{[3-5]}$ -与之相比, α , β -不饱和醛直接催化加氢制备 α , β -不饱和醇是原子经济反应,符合现代绿色化工要求,因此受到广泛关注.但是对于含有共轭 C=C 和 C=0 键的 α , β -不饱和醛,加氢反应更易发生在 C=C 键而生成饱和醛,导致不饱和醇的选择性降低.因此,在催化领域开发具有高活性和高选择性的催化剂仍然是一项挑战.

近年来,研究者发现贵金属催化剂可作为 α,β-不饱和醛选择性加氢的有效催化剂. 以巴豆醛为例,其选择性加氢用的催化剂有 Pt^[6-11], Au^[12-16], Ir^[17-21]等. 其中 Ir 催化剂由于具有较大的 d 带宽度,对金属与反应物分子中的 C = C 键发生更强的排斥作用,从而比 Pt 和 Au 催化剂具有更高的巴豆醇选择性^[22-23]. 此外,负载于活性载体(如 TiO₂、CeO₂、ZnO等)上的金属催化剂以及添加助剂的催化剂(双金属催化剂)上的巴豆醛选择性加氢性能往往优于惰性载体(如 SiO₂)负载的单金属催化剂(或 非 负 载 型 单 金 属). 例如 Pt/TiO,^[10] 和 Ir/

 $TiO_2^{[17]}$ 催化剂中, TiO_2 载体对金属表面会产生部分包裹并形成 Pt- TiO_x 和 Ir- TiO_x 界面,有利于巴豆醛中 C=O 基团在此界面上的吸附和活化,因此提高了催化活性和选择性. He 等 $^{[21]}$ 通过实验和理论研究表明, Ir/Mo_2C 催化剂比 Ir/SiO_2 催化剂具有更高的巴豆醇选择性(高达 80%),归因于 Ir 与 Mo_2C 强电子相互作用增加了 Ir 表面的电荷密度,产生带负电的 $Ir^{\delta-}$ 物种,从而有利于极性 C=O 基团的吸附和活化并提高了不饱和醇的选择性. 最近报道的在 Ir/TUD-1 催化剂中添加 Mo 后, MoO_x 对 Ir 粒子的修饰作用改变了催化剂的形貌和电子性能,这种修饰导致 Ir- MoO_x 界面位点的产生,从而改变了巴豆醛的吸附和活化并提高了活性和选择性 $^{[24]}$. 此外,研究表明催化剂的催化行为还可归因于适当的 Ir 颗粒尺寸和表面酸性 $^{[18,20,25]}$.

从过去的研究中可以看出,载体性质对于 Ir 催化剂的形貌和电子结构等均有显著影响,进而改变了其反应行为. 储氢材料由于绿色安全地产生氢而备受关注 $^{[26-27]}$,并可作为催化剂载体应用于 α , β -不饱和醛选择性加氢. 最近,Wu 等 $^{[28]}$ 发现负载型 Pt/TiH₂催化剂在肉桂醛液相选择性加氢反应中活性显著高于 Pt/TiO₂催化剂,主要得益于 TiH₂体相中 H⁻/H⁺离子对有利于肉桂醛中 C = 0 键加氢. 受

收稿日期: 2020-10-17; 修回日期: 2020-11-20.

基金项目: 国家自然科学基金(No.21773212, 21643007)(The National Natural Science Foundation of China (No. 21773212 and 21643007).

作者简介: 郑万彬(1995-), 女, 硕士研究生(Zheng Wan-bin(1995-), Female, M.D. candidate).

^{*} 通讯联系人, E-mail: jiqinglu@ zjnu.cn.

此启发,我们以TiH₂为载体制备负载型Ir催化剂,对比了Ir/TiH₂催化剂与Ir/TiO₂催化剂在巴豆醛液相选择性加氢反应中的活性差异,并考察了不同还原温度对Ir/TiH₃催化剂反应行为的影响.

1 实验部分

1.1 催化剂制备

Ir/TiH₂催化剂采用常规浸渍法制备. 具体步骤如下,将 TiH₂(Aladdin, 99%)浸入 H₂IrCl₆水溶液(Ir含量为35%(质量分数))中,室温磁力搅拌4h,然后在50℃下干燥并烘干过夜以获得最终催化剂. 反应之前,将催化剂分别在150、300和450℃的温度下用 H₂(99.999%, 26 mL/min)还原1h. 以上催化剂分别命名为(Ir/TiH₂)-150H₂,(Ir/TiH₂)-300H₂,(Ir/TiH₂)-450H₂. 同时,为了改变载体结构,先将催化剂在500℃的空气气氛下焙烧3h,再在H₂(99.999%, 26 mL/min)下150℃还原1h,并命名为((Ir/TiH₂)-C)-150H₂. 以类似的方式制备了一种参比催化剂,载体为商业TiO₂,反应之前在150℃下 H₂(99.999%, 26 mL/min)还原1h,催化剂命名为(Ir/TiO₂)-150H₂. 所有催化剂中 Ir 负载量均为3%(质量分数).

1.2 催化剂表征

采用 ARLADVANT' X Intelli Power 4200 型 X 射线荧光光谱仪对催化剂中实际 Ir 含量进行分析.

采用 Bruker 公司的 D8 ADVANCE 型 X 射线粉末衍射仪对催化剂进行物相分析. 以 Cu Kα 靶为激发光源,采集范围为 $10^{\circ} \sim 80^{\circ}$,扫描速率为 $0.15(^{\circ})/s$. 测试前将催化剂在相应温度下用 H_2 (99.999%, 26 mL/min)还原 1 h.

采用 JEM-2100F 型透射电子显微镜(HRTEM) 对催化剂的晶格条纹和金属颗粒尺寸进行分析. 测试前将催化剂在相应温度下用 H_2 (99.999%, 26 mL/min)还原 1 h.

氢气程序升温还原 $(H_2\text{-}TPR)$ 实验在自制的装置上进行. 将 50 mg 催化剂装入石英管反应器中,通入 5% H_2 -95% N_2 混合气(30 mL/min),以 $10 \text{ }^{\circ}\text{C/min}$ 的升温速率从室温加热到 750 $^{\circ}\text{C}$. 升温过程中样品耗氢量通过配有热导检测器(TCD)的气相色谱

仪测定. 实际耗氢量通过还原已知量的 CuO 粉末来 校准

采用 ESCALAB 250Xi 型 X 光电子能谱仪对催化剂中元素价态和表面组成进行分析. 激发源为 Al K α X 射线, 能量为 1486.6 eV, 电压 20 kV, 功率 150 W. 由表面沉积碳(C ls=284.8 eV)对各表面物种结合能进行校准. 测试前将催化剂在相应温度下用 H_2 (99.999%, 26 mL/min)还原 1 h.

CO 化学吸附的漫反射红外(DRIFT)光谱在 Nicolet iS50 FT-IR 光谱仪上进行,光谱仪配备 MCT 检测器和 PIKE DRIFT 附件. 测量前,样品在相应温度的 H_2 流(99.999%, 26 mL/min)中原位还原1 h,然后在 N_2 流(99.999%, 30 mL/min)中吹扫1 h,以去除催化剂表面和管路中残留的 H_2 . 然后将样品冷却至 30 \mathbb{C} (降温过程中分别采集 50、80、100、120 \mathbb{C} 的光谱,为相应温度的背景),并暴露于 CO 和 N_2 混合物(10% CO, 20 mL/min)中 30 min. 再将样品用 N_2 吹扫 30 min,去除气相和物理吸附的 CO,并记录 30 \mathbb{C} 的光谱. 接着以 $10 \mathbb{C}$ /min 的速率进行程序升温脱附,采集相应温度下的样品光谱.

1.3 催化剂性能测试

液相巴豆醛加氢在 100 mL 不锈钢高压釜中进行. 使用前在特制的石英管中在相应还原温度下用 $H_2(99.999\%, 26 \text{ mL/min})$ 预处理 100 mg 催化剂. 将催化剂冷却至室温后,在 H_2 气流下将 14.5 mL 异丙醇注入管中用溶剂浸泡催化剂. 然后将悬浮液立即转移到高压釜中,避免暴露于空气中,与巴豆醛 (6.0 mmol) 混合,然后用 H_2 冲洗 6 次,去除高压釜中的空气. 当在 $80 \, ^{\circ} (800 \text{ r/min})$ 搅拌下引入 $H_2(99.999\%)$,压力保持在 0.7 MPa 时反应开始. 在 3 h后反应停止,用配备 DB-毛细管柱 $(30 \text{ m} \times 0.25 \text{ mm} \times 0.25 \text{ mm})$ 的气相色谱 (8) 以及应产物和反应物进行分析.

2 结果与讨论

2.1 催化剂表征

表 1 总结了催化剂的物理性质. 不同还原温度的 Ir/TiH₂催化剂具有相似的比表面积(47~54 m²·g⁻¹). 通过 XRF 测得的催化剂中的金属含量与理论值一致. 由于催化剂通过浸渍法制备, 金属量损失较少, 因此催化剂中 Ir 的实际负载量应与理论负载量十分接近.

表 1 各种催化剂的物理性质

Table 1 Physical properties of various Ir catalysts

Catalyst	$S_{ m BET}/$ $({ m m}^2\cdot{ m g}^{-1})$		Diameter of Ir) particles ^b /nm
(Ir/TiH ₂)-150H ₂	54	2.94	1.5 ± 0.3
$(\mathrm{Ir/TiH}_2)\text{-}300\mathrm{H}_2$	50	2.94	3.1 ± 0.3
$(\mathrm{Ir/TiH}_2)\text{-}450\mathrm{H}_2$	47	2.94	4.6 ± 0.6
$(\mathrm{Ir/TiO}_2)\text{-}150\mathrm{H}_2$	53	2.94	3.2 ± 1.0
(Ir/TiH2-C)-150H2	50	2.94	3.6 ± 0.6

a. Determined by XRF; b. Determined by TEM

图 1 为催化剂的 XRD 图谱,可以观察到 TiH_{1.924}的特征衍射峰(PDF#25-0982),并且在未还原的 Ir/TiH₂和在空气中焙烧后还原的((Ir/TiH₂)-C)-150H₂催化剂中出现了金红石型 TiO₂的特征衍射峰(PDF#76-1938),表明在暴露空气条件下有少量 TiH₂被氧化为 TiO₂. 而所有催化剂中都没有观察到 Ir 物种的明显衍射峰,表明 Ir 物种在催化剂中高度分散.

图 2 为各种预还原催化剂的 HRTEM 图像. 通过测量晶格条纹来证实金属 Ir 粒子(d Ir(111)=0.225 nm)和载体(d TiH_{1.924}(111)=0.257 nm, d TiO₂(101)=0.352 nm)的存在. 对每种催化剂中的 Ir 颗粒进行分析后发现, 催化剂中 Ir 粒径分布比较窄(表 1), 且随着还原温度升高, Ir 颗粒尺寸逐渐增大(从(Ir/TiH₂)-150H, 催化剂的 1.5 ± 0.3 nm 到

图 1 Ir/TiH₂催化剂的 XRD 图 Fig.1 XRD patterns of Ir/TiH₂ catalysts

 (Ir/TiH_2) -450 H_2 催化剂的 4.6±0.6 nm),表明催化剂中 Ir 物种分散度随着还原温度的升高而有所下降. 值得注意的是, (Ir/TiH_2) -150 H_2 中 Ir 颗粒尺寸(1.5 nm)小于 (Ir/TiO_2) -150 H_2 中的 Ir 颗粒尺寸(3.2 nm),表明 TiH_2 载体对 Ir 物种具有更好的分散性能.

图 2 代表性催化剂的 HRTEM 图像 Fig.2 HRTEM images of some representative catalysts

各催化剂的 H₂-TPR 图谱如图 3 所示. 所有 Ir催化剂在125~230 ℃范围内出现还原峰, 可能与

图 3 新鲜催化剂的 H₂-TPR 图 Fig.3 H₂-TPR profiles of fresh catalysts

IrCl_x或者 Ir 离子的还原有关,但也不能排除可能由 氢溢流现象引起的表面 TiO_2 的部分还原. 而在 Ir/ TiO_2 催化剂上,出现了两个还原峰,这可能与 Ir 离子在载体上的分布有关,较低温的还原峰可能是与 TiO_2 基本没有形成相互作用(或相互作用较弱)的 Ir 物种,而较高温的还原峰归因于与 TiO_2 有较强相互作用的 Ir 物种. 相比于 Ir/TiO_2 催化剂, Ir/TiH_2 催化剂还原峰在更高温出现,表明 IrO_x - $TiH_{1.924}$ 相互作用 更强,因此更难还原 Ir 氧化物. 值得注意的是, (Ir/TiH_2)-C 催化剂没有出现 Ir 氧化物的还原,可能是因为焙烧包裹住裸露在外面的 Ir 氧化物物种. 另外, Ir/TiO_2 和 Ir/TiH_2 催化剂的 H_2 消耗量分别为 0.36 和 0.33 mmol/g(图 3).

图 4 为 Ir 催化剂的 Ir 4f 和 O 1s XPS 谱图. 如图 4(a)所示,结合能为 61.0 和 61.9 eV 的两个组分可分别归属于金属 Ir⁰和缺电子的 Ir^{δ+}物种^[29],结合能为 62.9 eV 的组分归属于 Ti $3s^{[25]}$. 各催化剂的 Ir 4f 谱图大体一致,其结合能没有发生明显的转移. 而相比于负载在 TiO₂上的催化剂,负载在 TiH₂上的催化剂的 Ir⁰/Ir^{δ+}的比例较高. 此外 Ir/TiH₂催化剂中随着还原温度的升高导致Ir⁰/Ir^{δ+}比例逐渐

图 4 预还原 Ir 催化剂的(a) Ir 4f 和(b) O 1s XPS 图 Fig.4 (a) Ir 4f and (b) O 1s XPS spectra of pre-reduced Ir catalysts

上升,表明表面氧化 Ir 物种变少. 图 3b 是 O 1s XPS 谱图,表明存在 3 种类型的 O 物种^[28].一个与 Ti-

O-Ti 晶格中的氧(标记为 A)有关,一个与缺陷位点 附近或 Ti-OH 中的氧(标记为 B)有关,另一个与化 学吸附的含氧物种(例如 H_2O , 标记为 C)相关. 结果表明,与 Ir/TiO_2 催化剂(6%)相比, Ir/TiH_2 催化

剂的 B 型氧物种的百分比(14%)更多. 如图 5 所示,通过 CO 化学吸附红外光谱进一

图 5 (a)各预还原催化剂的 CO 吸附 DRIFT 光谱图; (b)预还原(Ir/TiO₂)-150H₂和(c) 预还原(Ir/TiH₂)-150H₂ 催化剂上 CO 在不同温度下的脱附 DRIFT 光谱图

Fig.5 DRIFT spectra of (a) CO adsorption on species on pre-reduced catalysts at 30 ℃; CO desorption on pre-reduced (b) (Ir/TiO₂)-150H₂ and (c) (Ir/TiH₂)-150H₂ at catalyst at elevated temperatures

步探测预还原催化剂的结构和电子性质. 据文献报 道, CO 化学吸附在团聚的 Ir 物种(即<10 nm)上通 常在 2020 cm⁻¹处出现特征峰, 而吸附在高度分散 的 Ir 物种上在约 2060 cm⁻¹ 处出现特征峰^[30]. 图 5(a))中,在 Ir/TiO,催化剂中,分别在 2068 和 2017 cm⁻¹处观察到两个吸附峰, 这表明催化剂中存 在着高度分散的 Ir 物种的同时也存在着团聚的 Ir 物种,这与HRTEM结果相符合.而在Ir/TiH,催化 中都没有出现 2020 cm⁻¹处的特征峰, 表明 Ir 颗粒 很小且高度分散,这与 HRTEM 结果也一致(图 2). (Ir/TiH₂)-150H₂催化剂在 2064 cm⁻¹处显示一个吸 附峰, 归属于 CO 在金属 Ir 上的线性吸附, 而相比 于(Ir/TiH₂)-300H₂催化剂吸附峰(2068 cm⁻¹),该 吸附峰向低波数移动, 表明表面 Ir 物种的电子密度 增加. 这种偏差可能是 Ir 颗粒尺寸变化的影响, 通 常较小金属颗粒上的表面电子密度较高[31]. 催化剂 的 HRTEM 图像(图 2)显示, (Ir/TiH,)-150H,催化 剂的 Ir 颗粒尺寸略小于(Ir/TiH,)-300H,催化剂的 Ir 颗粒尺寸(表 1), 因此 CO 吸附峰往低波数偏移. 值得关注的是,在(Ir/TiH₂)-450H,催化剂上没有观 察到任何的吸附峰,可能是高温还原导致 TiH,载体 包裹住 Ir 物种引起的[7]. 图 5(b)中, (Ir/TiO2)- 150H₂催化剂上金属 Ir 上线性吸附的 CO 强度随着温度升高而略有下降,表明 CO 在 Ir 表面吸附较强,但吸附峰的波数无明显变化.而在(Ir/TiH₂)-150H₂催化剂上(图 5(c)),随着温度的升高,金属Ir 上线性吸附的 CO 强度逐渐降低,而吸附峰的波数保持不变(2064 cm⁻¹). 这表明相比于(Ir/TiO₂)-150H₂催化剂,CO 在(Ir/TiH₂)-150H₂催化剂上的吸附较弱.

2.2 催化剂上巴豆醛液相选择性加氢反应

各催化剂上巴豆醛液相选择性加氢反应结果如表 2 所示. TiH₂载体几乎没有活性(反应 3 h 后巴豆醛转化率仅为 1.5%),且巴豆醇选择性仅为 17%,主要产物为丁醇(39%). 金属 Ir 的负载显著提高了催化性能. 一方面,在相同的反应条件下,与负载在 TiO₂上的催化剂相比,当 Ir 负载在 TiH₂载体上,其催化性能大大提高. (Ir/TiH₂)-150H₂催化剂上巴豆醛转化率为 52.4%,是(Ir/TiO₂)-150H₂(25.6%)的 2 倍;(Ir/TiH₂)-150H₂催化剂上巴豆醇选择性高达 77.9%,高于(Ir/TiO₂)-150H₂(51.0%)催化剂,而两种催化剂上的巴豆醇转换数(TON)也差异明显(71.2 h⁻¹ vs. 33.4 h⁻¹),表明活性差异与催化剂表面性质密切相关. 有文献表明^[28],Pt/TiH,催化

± ^	선 내 내 가 의	上巴豆醛液相加氢结果'
	各和推犯	

Table 2 Hydrogenation	of	crotonaldehyde	over	various	catalysts	a
-----------------------	----	----------------	------	---------	-----------	---

Catalyst	Conv.	Selectivity ^b /%				TON^{c}
		CROL	BUAL	BUOL	others	$/h^{-1}$
(TiH ₂)-150H ₂	1.5	17.3	22.0	38.8	21.9	n.d.
$(\mathrm{Ir/TiH}_2)\text{-}150\mathrm{H}_2$	52.4	77.9	11.6	6.6	3.9	71.2
$(\mathrm{Ir/TiH}_2)\text{-}300\mathrm{H}_2$	11.4	73.2	15.3	7.5	4.0	30.1
$(\mathrm{Ir/TiH}_2)\text{-}450\mathrm{H}_2$	2.5	37.9	37.4	22.4	2.3	5.1
$(\operatorname{Ir/TiO_2})\operatorname{-150H_2}$	25.6	51.0	39.0	6.3	3.7	33.4
$((\mathrm{Ir}/\mathrm{TiH}_2)\text{-C})\text{-}150\mathrm{H}_2$	1.4	14.9	27.6	28.2	29.3	0.9

- a. Reaction conditions: crotonaldehyde = 6 mmol, isopropanol = 14.5 mL, catalyst loading = 100 mg, Reaction temperature = $80 \, ^{\circ}$ C, Reaction time = 3 h, H₂ pressure = 0.7 MPa;
- b. CROL= crotyl alcohol, BUAL = butanal, BUOL = butanol;
- c. Turnover number (TON) = mols of crotyl alcohol formed / (per mol of surface Ir atoms * per hour).

剂在肉桂醛液相选择性加氢中表现出优异的活性和 选择性, 这归因于 Pt 晶体-载体边界层的功能, 导 致 CAL 优先以其 C = 0 键吸附在该边界层上. 并且 因 TiH₂载体表面具有薄 TiO_xH_x覆盖层的独特结构 有助于分离和稳定 H⁺和 H⁻物种, 从而在 Pt/TiH, 催化剂上发生了离子氢化. 在本工作中, Ir/TiH,催 化剂的催化性能也得到了类似的规律, 因此我们认 为与负载在 TiO2上的催化剂相比, 当 Ir 负载在 TiH,载体上,其催化性能的提高可归因于 TiH,这种 特殊载体表面富含的氧缺位和对 H 强的活化能力. 正如上述文章所提及的, TiH。载体表面是具有薄 TiO_xH_x覆盖层,而我们通过图 4(b)可以得到,(Ir/ TiH,)-150H,催化剂表面氧缺位百分比是(Ir/TiO,)-150H。催化剂表面氧缺位百分比的 2 倍, 因此将有 更多氧缺陷位点会与0原子相互作用,使C=0键极化[32-33],从而提高了催化剂对不饱和醇的选 择性. 此外, TiH, 载体这种独特的结构能够将 H 原 子异裂为 H⁺和 H⁻物种并且使其稳定,这种杂化氢 物种的活性往往比氢原子的活性高, 进而 H⁻去进 攻C = O键的 C, H^+ 去进攻C = O键的 O, 从而提高 了催化剂的活性.

另一方面,在 Ir/TiH₂催化剂中随着还原温度的升高,其催化活性显著降低(从 52.4%到 2.5%),巴豆醇的选择性也逐渐降低(从 77.9%到 37.9%).为了比较催化剂的本征活性,我们进一步根据各催化剂中 Ir 的分散度进行了转换数(TON)的计算.从表 2 中可以看出,不同还原温度的 Ir/TiH₂催化剂上

的 TON 存在明显差异(从 71.2 到 5.1 h⁻¹). 这种差异可能与颗粒尺寸有关,随着还原温度的升高,催化剂的金属颗粒尺寸依次变大(1.5、3.1、4.6 nm),文献表明较小的粒径有利于 C = 0 键加氢[34],进而提高了催化剂的催化性能. 值得注意的是,当还原温度为 450 ℃时,催化剂(Ir/TiH_2)-450 H_2 几乎无活性,这可能是高温下促使薄 TiO_xH_y 覆盖层包裹住裸露在外面的 Ir 氧化物物种,这与 CO-DRIFTS 结果(图 5(a))相符合. 而在空气中焙烧过的((Ir/TiH_2)-C)-150 H_2 催化剂的活性(1.4%)和巴豆醇的选择性(14.9%)急剧下降,这可能是由于焙烧过程中载体包裹住 Ir 物种引起的,这与 Ir2-TPR 结果(图 3)—致.

为了进一步理解催化剂的反应行为,我们选取了(Ir/TiO₂)-150H₂和(Ir/TiH₂)-150H₂两种催化剂并考察其活性随时间的变化情况,结果如图 6 所示.在(Ir/TiO₂)-150H₂催化剂上(图 6(a)),巴豆醛的转化率随着反应时间的增加而逐渐升高,在 4 h 后达到 27.7%.同时巴豆醇选择性在整个反应过程中基本保持稳定(50%).值得注意的是,随着反应时间的延长,丁醛的选择性略有增加,而丁醇的选择性略有降低.对于(Ir/TiH₂)-150H₂催化剂(图 6(b)),巴豆醛的转化率在 4 h 后达到 54%,巴豆醇的选择性保持在 79%,而副产物(丁醛和丁醇)的选择性保持在 12%以下,并且所有产物的选择性几乎保持恒定,这表明反应物巴豆醛向主要产物(巴豆醇和丁醛)的转化是平行和非竞争性的.

图 6 在(a) (Ir/TiO₂)-150H₂和(b) (Ir/TiH₂)-150H₂催化剂上巴豆醛加氢随时间的变化 反应条件: 巴豆醛 6.0 mmol, 异丙醇 14.5 mL, 催化剂 100 mg, 80 ℃, H₂ 0.7 MPa

Fig.6 Time courses in hydrogenation of crotonal dehyde over (a) (Ir/TiO₂)-150H₂ and (b) (Ir/TiH₂)-150H₂ catalysts Reaction conditions: crotonal dehyde 6.0 mmol, isopropanol 14.5 mL, catalyst 100 mg, 80 $^{\circ}$ C, H₂ 0.7 MPa

根据图 6 中的结果, 可以以差分形式推导出催 化剂的速率表达式: $\frac{dc}{dt} = k_A c^n$, 其中 c 是特定反应时 间巴豆醛的浓度(mol/L), k_a 是表观反应常数, n是巴豆醛的反应级数. 由于在整个反应过程中 H。的 压力保持恒定(0.7 MPa),由此仅考虑巴豆醛的浓 度. 此表达式可以演变为 $\frac{1}{n-1}\left(\frac{1}{c^{n-1}}-\frac{1}{c_0^{n-1}}\right)=k_A t$, 其 中 c_0 是反应混合物中巴豆醛的初始浓度(0.4 mol/ L). 通过非线性回归, 可确定在(Ir/TiO₂)-150H₂和 $(Ir/TiH,)-150H,催化剂上巴豆醛的速率常数 <math>k_{A}$ 和 反应级数 n. 对于(Ir/TiH_2)-150 H_2 催化剂, 巴豆醛 的速率常数和反应级数为 $k_A = 0.89 \times 10^{-3}$ (mol/ L) 0.6/min, n = 0.4; 而(Ir/TiH₂)-150H₂的速率常数 $k_A = 1.29 \times 10^{-3} \, (\text{mol/L})^{0.5} / \text{min}, n = 0.5.$ 负载在 TiH,上的 Ir 催化剂上较高的速率常数表明其反应 活性较强, 这与表 2 所示的总体性能一致. 而(Ir/ TiH₂)-150H₂催化剂上的巴豆醛反应级数(0.5)与 (Ir/TiO₂)-150H₂催化剂上的巴豆醛反应级数(0.4) 接近,表明巴豆醛在两者催化剂上的覆盖度总体差 别不大. 因此, 二者催化行为的差异可归因于 TiH, 载体的独特性质,即其表面对巴豆醛和氢物种的活 化能力.

3 结论

4Ir/TiH₂催化剂是用于巴豆醛液相选择性加氢非常有效的催化剂,其良好的催化性能归因于催化剂表面富含的氧缺位和强的 H 活化能力. 此外,不同还原温度的 Ir/TiH₂催化剂存在明显的活性差异,这可归因于颗粒尺寸效应,较小的颗粒尺寸有利于C=0 键加氢,进而提高了催化剂的催化性能. 而高温还原的催化剂由于金属-载体间的相互作用,产生了 Ir 物种被载体包裹的现象,导致其活性降低.

参考文献:

- Gallezot P, Richard D. Selective hydrogenation of α,β-unsaturated aldehydes [J]. Catal Rev, 1998, 40 (1/2): 81–126.
- [2] Mäki-Arvela P, Hájek J, Salmi T, et al. Chemoselective hydrogenation of carbonyl compoundsover heterogeneous catalysts [J]. Appl Catal A: Gen., 2005, 292: 1-49.
- [3] Grass M E, Rioux R M, Somorjai G A. Dependence ofgas-phase crotonaldehyde hydrogenation selectivity and activity on the size of Pt nanoparticles (1.7-7.1 nm) supported on SBA-15[J]. Catal Lett, 2009, 128(1/2): 1-
- [4] Englisch M, Ranade V S, Lercher J A. Liquid phase hy-

- drogenation of crotonal dehydeover Pt/SiO_2 catalysts [J]. Appl Catal A: Gen, 1997, **163** (1/2): 111–122.
- [5] Claus P. Selective hydrogenation of α,β-unsaturated aldehydes and other C = O and C = C bonds containing compounds [J]. Top Catal, 1998, 5: 51-62.
- [6] Englisch M, Ranade V S, Lercher J A. Hydrogenation of crotonaldehyde over Pt based bimetallic catalysts [J]. J Mol Catal A: Chem, 1997, 121(1): 69-80.
- [7] Dandekar A, Vannice M A. Crotonaldehyde hydrogenation on Pt/TiO₂ and Ni/TiO₂SMSI catalysts[J]. *J Catal*, 1999, **183**(2); 344–354.
- [8] Hidalgo-Carrillo J, Aramendía M A, Marinas A, et al. Support and solvent effects on the liquid-phase chemoselective hydrogenation of crotonaldehyde over Pt catalysts [J]. Appl Catal A: Gen, 2010, 385(1/2): 190-200.
- [9] Yang Xin, Mueanngern Y, Baker Q A, et al. Crotonaldehyde hydrogenation on platinum-titanium oxide and platinum-cerium oxide catalysts: Selective C = O bond hydrogen requires platinum sites beyond the oxide-metal interface [J]. Catal Sci Tech, 2016, 6(18): 6824-6835.
- [10] Englisch M, Jentys A, Lercher J A. Structure sensitivity of the hydrogenation of crotonaldehyde over Pt/SiO₂ and Pt/TiO₂[J]. J Catal, 1997, 166(1): 25-35.
- [11] Weng Zhi-huan, Zaera F. Sub-monolayer control of mixed-oxide support composition in catalysts via atomic layer deposition: Selective hydrogenation of cinnamaldehyde promoted by (SiO₂-ALD)-Pt/Al₂ O₃ [J]. ACS Catal, 2018, 8(9): 8513-8524.
- [12] Zanella R. Crotonaldehyde hydrogenation by gold supported on TiO₂: Structure sensitivity and mechanism[J]. *J Catal*, 2004, **223**(2): 328-339.
- [13] Claus P. Heterogeneously catalysed hydrogenation using gold catalysts [J]. Appl Catal A: Gen 2005, 291 (1/2): 222-229.
- [14] Lin Hai-qiang, Zheng Jian-wei, Zheng Xin-lei, et al. Improved chemoselective hydrogenation of crotonaldehyde over bimetallic AuAg/SBA-15 catalyst [J]. J Catal, 2015, 330: 135-144.
- [15] Chen H Y, Chang C T, Chiang S J, et al. Selective hydrogenation of crotonaldehyde in liquid-phase over Au/Mg₂AlO hydrotalcite catalysts [J]. Appl Catal A: Gen 2010, 381(1/2): 209-215.
- [16] Campo B C, Ivanova S, Gigola C, et al. Crotonaldehyde hydrogenation on supported gold catalysts [J]. Catal Today, 2008, 133/135; 661-666.
- [17] Reyes P, Aguirre M C, Melián-Cabrera I, et al. Interfacial properties of an Ir/TiO₂ system and their relevance in

- crotonaldehyde hydrogenation [J]. J Catal, 2002, 208 (1): 229-237.
- [18] Hong Xiao, Li Bo, Wang Yue-juan, et al. Stable Ir/SiO₂ catalyst for selective hydrogenation of crotonaldehyde [J]. Appl Surf Sci., 2013, 270; 388-394.
- [19] Li Bo, Hong Xiao, Lin Jian-jun, et al. Promoting effect of Ir on the catalytic property of Ru/ZnO catalysts for selective hydrogenation of crotonaldehyde [J]. Appl Surf Sci, 2013, 280: 179-185.
- [20] Yu Qin, Zhang X, Li Bo, et al. Effect of reduction temperature on Ru Ir/ZnO catalyst for selective hydrogenation of crotonaldehyde [J]. J Mol Catal A: Chem, 2014, 392: 89-96.
- [21] He S, Shao Z J, Shu Y, et al. Enhancing metal-support interactions by molybdenum carbide: An efficient strategy toward the chemoselective hydrogenation of α, β-unsaturated aldehydes [J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2016, 22(16): 5698-5704.
- [22] He Si-na, Xie Li-fang, Che Min-wei, et al. Chemoselective hydrogenation of α,β-unsaturated aldehydes on hydrogenated MoO_x nanorods supported iridium nanoparticles[J]. J Mol Catal A: Chem., 2016, 425: 248–254.
- [23] Ryndin Y A, Santini C C, Prat D, et al. Chemo-, regio-, and diastereoselective hydrogenation of oxopromegestone into trimegestone over supported platinoids: Effects of the transition metal, support nature, tin additives, and modifiers [J]. J Catal, 2000, 190(2): 364-373.
- [24] Xu Yu-meng, Zheng Wan-bin, Hu Yi-ming, *et al.* The effects of MoO_x decoration on the selective hydrogenation of crotonaldehyde over MoO_x-promoted Ir/TUD-1 catalysts[J]. *J Catal*, 2020, **381**: 222–233.
- [25] Chen Ping, Lu Ji-qing, Xie Guan-qun, et al. Effect of reduction temperature on selective hydrogenation of crotonaldehyde over Ir/TiO₂ catalysts[J]. Appl Catal A: Gen 2012, 433/434; 236-242.
- [26] El-Eskandarany M S, Shaban E, Aldakheel F, et al. Syntheticnanocomposite MgH₂/5wt.% TiMn₂ powders for solid-hydrogen storage tank integrated with PEM fuel cell [J]. Sci Rep., 2017, 7(1); 1-16.
- [27] Reilly J J, Sandrock G D. Hydrogenstorage in metal hydrides [J]. Sci Am, 1980, 242(2): 118-129.
- [28] Wu Qi-fan, Zhang Chao, Arai M, et al. Pt/TiH₂ catalyst for ionic hydrogenation via stored hydrides in the presence of gaseous H₂[J]. ACS Catal, 2019, 9(7): 6425– 6434.
- [29] Janiszewska E, Zieliński M, Kot M, et al. Aqueousphase hydrodechlorination of trichloroethylene on Ir cata-

- lysts supported on SBA-3 materials [J]. *ChemCatChem*, 2018, **10**(18); 4109-4118.
- [30] Mc Vicker G. Chemisorption properties of iridium on alumina catalysts [J]. *J Catal*, 1980, **65**(1); 207–220.
- [31] Bourane A, Dulaurent O, Bianchi D. Comparison of thecoverage of the linear CO species on Pt/Al₂O₃ measured under adsorption equilibrium conditions by using FTIR and mass spectroscopy [J]. *J Catal*, 2000, **195**(2): 406-411.
- [32] Vannice M. Metal-support effects on the intramolecular selectivity of crotonaldehyde hydrogenation over platinum

- [J]. J Catal, 1989, **115**(1): 65-78.
- [33] Hu Tian-jun, Zhang Li-na, Wang Ying, et al. Defect engineering in Pd/NiCo₂O_{4-x} for selective hydrogenation of α,β-unsaturated carbonyl compounds under ambient conditions [J]. ACS Sustain Chem Eng., 2020, 8 (21): 7851-7859.
- [34] Yang Xiao-feng, Wang Ai-qin, Wang Xiao-dong, et al. Combined experimental and theoretical investigation on the selectivities of Ag, Au, and Pt catalysts for hydrogenation of crotonaldehyde [J]. J Phys Chem C, 2009, 113 (49): 20918–20926.

High Performance Ir/TiH₂ Catalysts for Liquid Phase Selective Hydrogenation of Crotonaldehyde

ZHENG Wan-bin¹, YE Yan-wen¹, HU Yi-ming¹, TANG Cen¹, LI Yan-ming², LU Ji-qing^{1*}
(1. Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Jinhua 321004, China;

2. Zhejiang Normal University Library And Information Center, Zhejiang Normal University, Jinhua 321004, China)

Abstract: In this work, liquid phase selective hydrogenation of crotonaldehyde was carried out on a series of Ir/TiH_2 catalysts, and the effect of reduction temperature on the catalytic behaviors was investigated. It was found that the Ir/TiH_2 catalyst gave much higher activity (with a crotonaldehyde conversion of 52% at 80 °C) and much higher selectivity to crotyl alcohol (78%), compared to a reference Ir/TiO_2 catalyst. The enhanced reactivity was attributed to enriched oxygen vacancies on the TiH_2 surface and the strong H activation capability of the TiH_2 surport. In addition, high temperature reduction resulted in the growth of the Ir particles and consequently declined turnover frequency. It was deduced that smaller Ir particles were favorable for the hydrogenation of C = O bond in the crotonaldehyde molecule and thus improved the activity.

Key words: α, β -unsaturated aldehyde; selective hydrogenation; oxygen vacancy; hydrogen activation capacity; particle size effect