文章编号: 1001-3555(2015)01-0060-08

Ce 基复合氧化物同时催化去除碳烟-NO_x 的性能研究

王舒捷¹,邹谷初¹,徐 尧¹,陈铭夏¹,上官文峰^{1*},永长久宽²,寺冈靖刚²

(1. 上海交通大学 机械与动力学院燃烧与环境技术中心,上海 200240;2. 日本九州大学 综合理工学府,福冈)

摘要:我们采用柠檬酸配合法制备了 Ce 基复合氧化物催化剂,分别在热重分析仪(TG)和管式反应器中测试了其 氧化碳烟及同时脱除 NO_x 的催化活性;并利用 XRD、BET、H₂-TPR、XPS 表征手段考察其结构.其中,Co_{0.1}/ CeLa_{0.05} 复合氧化物同时催化去除碳烟和 NO_x 的性能最佳,碳烟脱除率为 50% 的反应温度为 301 ℃,N₂ 产率为 41.4%.实验结果表明,Co 主要以氧化物形式均匀分散在 Ce-La 固溶体表面,Co³⁺与 Co²⁺价态共存,离子间的变价 有利于提高催化剂的氧化还原性能,有效降低了碳烟的起燃温度.La 的引入增大了催化剂的比表面积,抑制了 CeO₂ 晶粒长大,进而提高了 N₂ 产率.部分 La 和 Co 形成了微量的 LaCoO₃,形成了更多氧空位,有利于提高催化 氧化碳烟的活性.

关键词:催化去除;铈基氧化物;碳烟;NO_x;柠檬酸配合法

中图分类号: 0643.32 文献标志码: A

近年来,随着汽车保有量的快速增长,机动车 排放污染己成为城市雾霾的主要来源之一.柴油机 因其经济高效性而被广泛应用于机动车,在柴油机 非均相扩散燃烧过程中产生的主要有害排放物为颗 粒物(PM)和氮氧化物(NO_x),两者存在着此消彼 长的 trade-off 效应^[1],

仅通过内燃机改性难以满足排放法规. Yoshida^[2]首先提出了在富氧条件下可以同时去除 PM 和 NO_x. Pt 等贵金属催化剂对碳烟去除有一定的效果 但对 NO_x 去除效果不理想^[3],且贵金属催化剂成本 昂贵易中毒使其实际应用受到了限制. Shangguan 和 Teraoka^[4-6]等对非贵金属催化剂同时催化去除 NO_x 和固体干碳烟做了一系列的研究,发现复合氧 化物催化剂的催化活性和 N₂ 选择性均优于单一过 渡金属氧化物催化剂.

Ce 为一种比较特殊的镧系元素,最外层电子 结构为4f²5d⁰6s²,空闲5d 的轨道有利于电子转移, Ce 元素因此呈现出多价态特性.CeO₂ 因其良好的 储放氧能力和优异的氧化还原性质而被广泛用作汽 车尾气净化催化剂载体^[7-8].不过CeO₂ 自身的活 性并不能满足使用需求,因此常通过掺杂负载等方 式改性氧化铈的催化性能.我们采用柠檬酸配合法 制备了 Co-La-Ce 复合氧化物催化剂,研究了其同时催化去除碳烟和 NO_x 的催化活性并探讨了影响催化性能的决定因素.

1 实验部分

1.1 催化剂制备

按照不同摩尔比称取一定量的 Ce(NO₃)₃ · 6H₂O、La(NO₃)₃ · 6H₂O 和 Co(NO₃)₂ · 6H₂O,制 备 Ce_{1-x}La_x、Ce_{1-x}Co_x和 Co_x/Ce_{0.95-x}La_{0.05}氧化物催 化剂,其中 Ce、La和 Co元素的摩尔总和为1,x的 比例分别取 0.02、0.05、0.1、0.2和 0.3.将 Ce、 Co、La 前驱体混合过量柠檬酸,溶于适量的去离子 水中制成溶液.80℃水浴搅拌蒸干后,在马弗炉中 以5℃/min速度加热至400℃焙烧1h,冷却至室 温研磨成粉末,再放入马弗炉以5℃/min速度加热 至 600℃焙烧4h,冷却至室温研磨制成 Ce_{1-x}La_x、 Ce_{1-x}Co_x和 Co_x/CeLa_{0.05}系列催化剂粉末.

1.2 催化剂表征

XRD:催化剂晶体结构采用 BRUKERD D8 advance X-射线粉末衍射仪进行测试,管功率 2.2 kW,铜靶光源波长 λ=0.15406 nm,扫描速度为 6℃/min,扫描角度 20~80℃.晶粒大小根据

收稿日期: 2014-12-16;修回日期: 2015-01-19.

基金项目: 国家自然科学基金(20807027).

作者简介: 王舒捷(1992-), 女, 硕士研究生.

^{*} 通讯联系人, E-mail: shangguan@ sjtu.edu.cn(上官文峰).

Scherrer 公式进行计算: $D = \frac{K\lambda}{\beta\cos\theta}$. 其中 K 为 Scherrer 常数、D 为晶粒尺寸(nm)、B 为实测样品衍射 峰半高宽度(rad)、 θ 为衍射角、 λ 为 X 射线波长.

BET: 在美国麦克仪器公司 TRISTAR Ⅱ 3020 型 比表面积和孔隙分析仪上进行 N₂ 吸附脱附. 催化 剂样品在 200 ℃条件下脱气 3 h, 比表面积可以由 BET 方程计算得到.

H₂-TPR:采用麦克吸附仪进行分析,20 mg 催 化剂样品在在氮气气氛下300 ℃预处理1h 后降至 室温,待基线平稳后,切换至流速50 mL/min 的 5% H₂/N₂ 混合气吹扫,从室温升到800 ℃,升温速 度10 ℃/min,使用 TCD 检测氢气的吸附量.

XPS:X 射线光电子能谱分析在日本岛津-Kratos 公司生产的 AXIS Ultra^{DLD} 上测定,采用 Al/Mg 双阳极辐射源.

1.3 催化剂活性评价

催化剂的催化活性采用热重分析仪(TG)和程序升温表面反应技术(TPSR)进行评价.由于 Degussa公司生产的 Printex-U 色素碳黑的物理化学 特性与柴油机排放 PM 相似,采用其作为模拟碳烟.为了保证实验的重复性,消除传热传质对实验 的影响,我们将模拟碳烟与催化剂按照1:19 的质量比进行紧接触混合,研磨20 min 装样保存以备测 试性能.

采用 NETZSCH-STA449 热重分析仪在空气气 氛下对催化活性进行评价,准确称取 10 mg 研磨好 的碳烟与催化剂混合物装样,以 40 ℃/min 升温到 150 ℃,恒温保存 20 min,去除表面的污染物及吸 附水后,以 5 ℃/min 速度从 150 到 750 ℃进行程序 升温^[9].

管式反应测试系统主要由气路控制柜、程序升 温控制、固定床反应器、气相色谱组成.采用 O_2 (5%)/He、NO(2 000 ppm)/He 和高纯 He(平衡 气)混合模拟柴油机尾气中的 NO_x 成分.碳烟与催 化剂的混合物在石英管进行反应,气体控制柜装有 四通阀用来切换气路,程序控温电加热炉用来控制 固定床的温度,精度为±2 °C,响应时间 ≤ 0.5 s.测 试色谱为岛津 GC-14B 热导气相色谱仪,其中 O_2 、 N₂、NO 和 CO 采用 MS-5A 分离柱分离, CO₂ 和 N₂O 采用 P-Q 分离柱分离.实验中,称取 0.33 g 混合物 用石英棉固定在反应管内,通入 25 mL/min 氦气, 在 300 °C 预处理 1 h 去除表面杂质和吸收的水分; 在氦气保护下冷却至100 ℃. 切换气路通入25 mL/ min 的反应气(5% O₂+2 000 ppm NO),待气流稳定 后,以1.6 ℃/min 的速率从100 到700 ℃进行程序 升温氧化反应,气相色谱每隔15 min 采样一次^[10].

催化剂的活性用碳烟脱除率为 10% 和 50% 的 反应温度 $(T_{10} 和 T_{50})$ 、 N_2 的产率 (η_{N_2}) 、和 N_2 选择 性 (S_{N_2}) 来评价.

$$\eta_{N_{2}} = \frac{2 \left[N_{2} \right]_{out}}{\left[NO \right]_{in}} \times 100\%$$
$$S_{N_{2}} = \frac{\left[N_{2} \right]_{out}}{\left[N_{2} \right]_{out} + \left[N_{2}O \right]_{out}} \times 100\%$$

其中, $[N_2O]_{out}$ 、 $[N_2]_{out}$ 为生成的 N_2 和 N_2O 的浓度, $[NO]_{in}$ 为通入的 NO 反应气浓度.

2 结果与讨论

2.1 催化剂活性评价

图 1 显示了 La、Co 不同掺杂量的 Ce_{1-x}La_x、 Ce_{1-x}Co_x和 Co_x/CeLa_{0.05}系列氧化物催化剂在空气 气氛下燃烧碳烟的峰值温度 T₅₀对比结果.从图中 可见,纯相 CeO,催化燃烧碳烟 T₅₀为445℃;在

图 1 Ce 基催化剂在空气气氛下催化碳烟的性能对比 Fig. 1 Catalytic performance of Ce-based Catalysts in air

CeO₂ 中掺杂适量的 La 有利于提高催化碳烟的活性, 当掺杂量为 5% 时, 碳烟燃烧的 T₅₀ 最低为 405 ℃; 在 CeO₂ 中加入适量的 Co 同样有助于提高碳烟的催化活性, 随着 Co 的含量增加, 碳烟燃烧的峰值温度 T₅₀ 未见明显差异; 在 Ce_{1-x}Co_x 系列氧化物催化剂中掺入 5% mol La 进一步提升了催化活性, 性能最佳的 Co_{0.1}/CeLa_{0.05} 催化剂峰值燃烧温度达到 357 ℃.

图2和表1比较了CeO₂、Co₃O₄、CeCo_{0.1}、Ce-

图 2 5% O₂+2000ppm NO 气氛下 Ce 基催化剂活性测试

Fig. 2 TPSR results of the simultaneous NOx-soot removal over Ce-based catalysts

Table 1 Summarized results of the simultaneous NOx-soot removal over Ce-based catalysts									
Catalyst	T ₁₀ ∕℃	T ₅₀ ∕℃	$\eta_{N_2}/\%$	$S_{N_2}/\%$	Grain Size of catalyst/nm				
CeO ₂	319	370	39.1	94.4	222				
$\operatorname{Co}_3\operatorname{O}_4$	300	348	31.1	95.8	362				
$CeCo_{0.1}$	270	310	34.1	93.6	109				
CeLa _{0.05}	308	350	52.7	93.4	124				
Co _{0.1} /CeLa _{0.05}	269	301	41.4	95.1	83				

表15%O,+2000 ppm NO 气氛下 Ce 基催化剂活性测试

La_{0.05} 以及 Co_{0.1}/CeLa_{0.05} 催化剂催化氧化碳烟生成 CO₂ 同时还原 NO_x 生成 N₂ 的催化活性.由图可见, 碳烟的氧化燃烧与 NO 的还原同时发生在同一个温 度区间,并且具有相似的变化趋势, O₂ 和 NO 共存 可使碳烟颗粒燃烧的活化能大大降低,碳烟和 NO 之间发生了氧化-还原反应^[4].NO 和 O₂ 的共存促 使了 NO 转化成 NO₂, NO₂ 能进一步氧化碳烟,同 时产生了具有高活性的 C * [O]中间体,促进了碳 烟和 NO 的反应.O₂ 的存在也增加了碳烟的表面高 活性中心,从而提高了碳烟的催化燃烧活性^[11].

 $C+2(\alpha+2\beta) NO+(1-\alpha-\beta) O_2 \rightarrow CO_2+\alpha N_2+2\beta N_2O$

 $(1-\alpha-\beta)C+(1-\alpha-\beta)O_2 \rightarrow (1-\alpha-\beta)CO_2$ $\alpha C+2\alpha NO \rightarrow \alpha N_2+\alpha CO_2$

 $\beta C + 4\beta NO \rightarrow 2\beta N_2 O + \beta CO_2$

其中, α 值和 β 值分别代表了在 O_2 +NO 气氛中, 碳 烟与 NO 作用使其转化为 N_2 和 N_2O 所消耗的碳含 量占总碳含量的比例.

从表1可以看出, CeO₂的碳烟起燃温度(T_{10}) 最高, N₂ 产率较低; Co₃O₄的碳烟起燃温度为 300 ℃,氧化碳烟能力较差, N₂ 产率最低. Ce-Co 复合 氧化物催化碳烟的 T_{10} 低于单一氧化物 CeO₂ 和 Co_3O_4 的 T_{10} , N_2 产率介于两者之间,这表明 Ce-Co 复合氧化物催化碳烟的效果不是两种单一氧化物的 效果叠加,而是两种氧化物之间相互作用的结果;

引入 La 对 CeO₂ 的催化性能也有一定的改善, CeLa_{0.05} 催化剂的 N₂ 产率最高,碳烟的 T₁₀ 也低于 单一氧化物 CeO₂ 的 T₁₀. 将 5% mol La 掺入 Ce-Co 复合氧化物后,碳烟催化活性和 N₂ 产率都进一步 提升. Co_{0.1}/CeLa_{0.05} 催化剂综合活性最佳,起燃温 度最低,T₁₀ 和 T₅₀ 分别为 269 ℃和 301 ℃,N₂ 产率 为 41.4%,且有效抑制了 N₂O 的生成,N₂ 选择性 高达 95.1%.

2.2 XRD

由 Scherrer 公式计算得到 CeO₂ 晶粒尺寸(见表 1), CeCo_{0.1} 和 CeLa_{0.05} 氧化物的晶粒尺寸远小于纯 相 CeO₂ 和纯相 Co₃O₄. 金属离子掺入 CeO₂ 的晶格中 或者在 CeO₂ 表面高度分散,有利于抑制 CeO₂ 的晶 粒长大使晶粒更为细小,有利于催化活性的增加. La 掺入 Ce-Co 复合氧化物中进一步抑制了 CeO₂ 的晶粒 长大, Co_{0.1}/CeLa_{0.05} 晶粒最小为 83 nm.

图 3 为不同比例 Ce_{1-x}La_x 催化剂的 XRD 谱图. 由图可见, Ce_{1-x}La_x 催化剂出现 CeO₂ 立方相(111)、(200)、(220)、(311)、(222)、(400)和 (331) 晶面的衍射峰, 无 La 氧化物的衍射峰, 表明 Ce_{1-x}La_xO₂ 氧化物催化剂主要以面心立方萤石结构 存在,这种立方体萤石结构的形成有助于氧的存储 和释放^[12].随着 La 含量的增加, CeO₂ 立方相的特 征衍射峰逐渐向低角度偏移,这可能是由离子半径 更大的 La³⁺(0.116 nm)进入 CeO₂ 晶格形成了 Ce_{1-x}La_xO₂ 固溶体造成的. La³⁺的掺杂可能有助于 形成氧空位,影响催化剂表面氧物种的变化, 从而 对催化燃烧碳烟起作用.

图 3 不同比例 Ce_{1-x}La_x 催化剂的 XRD 谱图 Fig. 3 XRD patterns for Ce_{1-x}La_x catalysts

由图 4 可见, Co_3O_4 于 2 θ = 36.86°处出现最强 衍射峰,表明 Co_3O_4 主要以六方密堆积的立方尖晶 石结构存在. CeO_2 立方相的衍射峰无明显偏移,没 有检测到其它明显的 Co 衍射峰,表明 Co 主要以 Co_3O_4 的形式高度分散在 CeO_2 表面.

图 5 为不同比例 $Co_x/CeLa_{0.05}$ 催化剂的 XRD 谱 图. 由图可见, Co 主要以 Co_3O_4 的形式分散在铈镧 固溶体表面. 相较于 $Ce_{1-x}Co_x$ 催化剂, $Co_x/CeLa_{0.05}$ 催化剂的谱图上 Co_3O_4 在 $2\theta=36.86°$ 处出现的衍射 峰有所减弱,除了 $Ce_{1-x}La_xO_2$ 氧化物的特征峰外, 在 2θ 衍射角 32.88°和 58.96°位置处出现了微弱的 峰,这些衍射角的位置和 $LaCoO_3$ 钙钛矿的 3 强峰 (32.58°,47.48°,58.98°)的位置一致,生成了微 量 $LaCoO_3$ 钙钛矿. $LaCoO_3$ 钙钛矿的生成有助于形 成更多氧空位,进一步提升了催化剂对碳烟的催化 活性.

图 5 不同比例 Co_x/CeLa_{0.05} 催化剂的 XRD 谱图 Fig. 5 XRD patterns for Co_x/CeLa_{0.05} catalysts

2.3 BET

图 6 为 Ce 基复合氧化物催化剂的比表面积与 燃烧碳烟催化活性分布关系图.由图上可知,复合

氧化物的比表面积比单一氧化物 CeO₂ 和 Co₃O₄ 的 比表面积大,这是复合氧化物催化性能提升的一部 分原因.在 Ce_{1-x}La_x 这组数据中,催化剂的比表面 积与燃烧碳烟的峰值温度 T₅₀ 成正比关系,随着比 表面积的增大,催化性能提升,活性最佳的 Ce-La_{0.05} 催化剂比表面积最大.这是由于随着比表面 积的增大,碳烟与催化剂的接触面增大了,同时催 化剂表面的活性中心数增加了,有利于催化剂与反 应物以及产物之间进行传热传质,促进催化燃烧反 应,从而降低了碳烟的起燃温度.在 Ce_{1-x}Co_x 和 Co_{0.1}/CeLa_{0.05} 体系中,活性与比表面积之间未见有 明显相关性,这是由于其对碳烟的催化氧化活性较 高,碳烟燃烧的活性受催化剂组分的影响较大.

2.4 H₂-TPR

图 7 为 Ce 基催化剂的 H₂-TPR 对比图. 由图可

Fig. 7 H_2 -TPR profiles for Ce-based catalysts

a. CeO_2 ; b. $CeLa_{0.05}$; c. $CeCo_{0.1}$; d. $Co_{0.1}/CeLa_{0.05}$

知, Ce 在高温下被还原, Co 主要在相对较低温度 下被还原^[13].

纯相 CeO₂ 有两个还原峰,第1个还原峰在501 ℃,第2个还原峰在755℃,主要对应着表面的 Ce⁴⁺和体相 Ce⁴⁺的还原^[14]. CeO₂ 掺杂 La 之后在较 低温度下(670℃)有更多的体相氧被还原,表面氧 物种还原峰稍向高温移动且峰强度增加(534 ℃)^[15],表明高价的 Ce 阳离子更容易还原为低价 的 Ce 阳离子,有助于提升催化剂的氧化还原性.

纯相Co₃O₄的还原主峰在 377 ℃ (强度过大, 故不在图上做出),在 CeCo_{0.1}和 Co_{0.1}/CeLa_{0.05}氧 化物的谱图中,Co在 300 ℃左右分裂成两个峰,分 别对应于 Co³⁺→Co²⁺和 Co²⁺→Co⁰的两个还原过程 (Co_{0.1}/CeLa_{0.05} 谱图上 Co的两个还原峰重叠)^[16]. Co_{0.1}/CeLa_{0.05} 的谱图中,Co的还原峰提前,表明 La 的掺入可以有效改善 CeCo_{0.1}氧化物中 Co的低 温氧化还原性能,这可能由于 La 与 Co 形成了氧化 能力更强的复合氧化物,也可能由于少量 La 的掺 杂生成了 Ce-La 氧化物改善了其与 Co₃O₄ 的相互作 用.同时,在 210 ℃左右的出现的小肩峰,这是由 于小晶粒 Co₃O₄ 的还原造成了氢溢流^[17],有助于 提高 Co 的氧化还原性能.

2.5 XPS

图 8 为 Ce 基氧化物的 XPS 图谱. (a)为 Ce 的 3d 谱图, Ce 3d_{5/2} 谱图有 3 个主要特征峰分别在 881.8 eV、888.3 eV 和 897.7 eV 处, Ce 3d_{3/2} 的 3 个主要特征峰在 900.2 eV, 906.9 eV 和 916.1 eV 结合能处,主要显示的是 Ce⁴⁺.观察不到 Ce³⁺特征 峰(885.6 eV 和 903.9 eV),这表明各复合氧化物 中 Ce 主要以 Ce⁴⁺ 形式存在^[18-20].(b)为 Co 的

图 8 Ce 基氧化物的 XPS 图谱 Fig. 8 XPS spectra of cerium-based catalysts

 $2p_{3/2}$ XPS 谱图,在结合能 779 eV 和 795.8 eV 附近 出现两个峰,这归属于 Co³⁺的特征峰,785~788 eV 之间出现较弱的卫星峰为 Co²⁺的特征峰^[21],表明 Co²⁺和 Co³⁺离子共存,因此 Co 主要是以 Co₃O₄ 的形 式分散在催化剂表面^[22].据报道,纯相 Co₂O₃ 的特 征峰在结合能 779.2 eV 处,纯相 CoO 的特征峰结 合能为 780.4 eV, Co²⁺的增加导致了峰向高结合能 位移动^[23]. CeCo_{0.1} 的谱图上 Co 的结合能从 779.2 eV 向 778.8 eV 移动,这表明 Co²⁺有向更高的价态 转变的趋势; La³⁺掺入 CeCo_{0.1} 复合氧化物后,使得 Co 的结合能从 778.8 eV 向 779.7 eV 移动,这表明 Co³⁺有转变为 Co²⁺的趋势,两种离子之间变价有利 于电子转移,有助于增加催化剂氧化性能,从而提 高催化碳烟的活性.

图9为Ce基催化剂的O1s图谱及其拟合曲 线.将O1s拟合成两个单峰,O₁归属于晶格氧 O²⁻,其结合能在528.9~530.8 eV之间;O₁归属于 表面弱吸附氧O的峰,其结合能在530.8~533.3 eV之间.XPS数据表格见表2,La在氧化物表面的 原子含量高于负载量,说明La³⁺离子在氧化物表面 有富集的趋势,这对催化性能影响不大;氧与金属 离子的物质的量的比(O₁+O₁)/(La+Co+Ce)均大于 预期值2(CeO₂的比例),表明负载La和Co有利于 在催化剂表面富集氧物种,有利于催化剂的整体活 性的提升.催化剂的活性主要取决于吸附氧的数量 及吸附氧中解离为活性氧物种的比例,所以O₁含 量是一个重要的判定指标^[24].Ce基复合氧化物

图 9 Ce 基氧化物的 O1s XPS 谱图及其拟合曲线 Fig. 9 XPS spectra of O1s from cerium-based catalysts a. CeLa_{0.05}; b. CeCo_{0.1}; c. Co_{0.1}/CeLa_{0.05}

CeLa_{0.05}、CeCo_{0.1}和 Co_{0.1}/CeLa_{0.05}表面的 O_Π含量 均远高于纯相 CeO₂和纯相 Co₃O₄,这表明 La、Co 对 CeO₂的改性有助于提升其吸附氧能力,并增加 其解离活化氧物种概率,促进了碳烟的燃烧.Fino 等发现,弱吸附的氧种在 300 ~ 500 ℃范围内,对碳 烟催化燃烧的高活性主要取决于氧溢流^[25].Co_{0.1}/ CeLa_{0.05}复合氧化物表现出的高催化活性,可以归 结于氧溢流机理及氧化还原机理的协同作用,La 的引入对 CeO₂晶格畸变及其氧空位的形成有着积 极的作用,这些氧空位为催化燃烧反应提供了更多 的活性氧物种.

Catalyst	$O_I / \%$	$O_{II}/\%$	La/Ce	Co/Ce	$O_{I}/(La+Co+Ce)^{*}$	$O_{II}/(La+Co+Ce)$ *
CeO ₂	91.67	8.33	/	/	3.78	0.34
$\mathrm{Co}_3\mathrm{O}_4$	47.08	52.92	/	1	0.80	0.90
CeLa _{0.05}	66.7	33.23	0.22	/	5.28	2.63
CeCo _{0.1}	60.69	39.31	/	0.07	5.5	3.56
Co _{0.1} /CeLa _{0.05}	69.27	30.73	0.25	0.11	5.21	2.31

表 2 复合氧化物的物理化字特征								
Tab. 2 Properties and pl	nysics-chemistry	of the	catalysts					

 * The molar ratio of surface oxygen (O_{I} or O_{II} to total surface metal atoms.

3 结论

3.1 柠檬酸配合法制备的 Ce-Co-La 系列复合氧 化物催化剂具有良好的同时催化去除碳烟-NO_x

性能.

3.2 Co 主要以氧化物微晶形式弥散分布在 Ce-La 固溶体表面.催化剂表面 Co³⁺与 Co²⁺价态共存, 金属离子间的变价有利于电子转移,有助于提高催 化剂的氧化还原性能,有效降低了碳烟的起燃温度. La 的引入增大了催化剂的比表面积,抑制CeO2 晶粒长大,有效提高了催化剂的 N2 产率. 部分 La 和 Co 形成微量 LaCoO3,有助于形成更多氧空位,从而进一步提高催化氧化碳烟的活性. 碳烟起燃温度的降低可能是由于氧溢流机理和氧化还原机理共同作用的结果.

参考文献:

- Henein N A. Analysis of pollutant formation and control and fuel economy in diesel engines [J]. Prog Ener Comb Sci, 1976, 1(4): 165-207.
- Yoshida K, Makino S, Sumiya S. Simultaneous reduction of NO_x and particulate emissions from diesel engine exhaust [C]. SAE Technical Paper 892046, 1989. doi: 10.4271/892046.
- [3] Castoldia L, Artiolia N. Study of DPNR catalysts for combined soot oxidation and NO_x reduction [J]. *Catal Today*, 2010, 157(1/4): 384–389.
- [4] Shangguan W F, Teraoka Y, Kagawa S. Kinetics of soot-O₂, soot-NO and soot-O₂-NO reactions over spinel-type CuFe₂O₄ catalyst [J]. Appl Catal, 1997, **12**: 237-247.
- [5] Shangguan W F, Teraoka Y, Kagawa S. Simultaneous catalytic removal of NO_x and diesel soot particulate over tenary AB₂O₄ spinel-type oxides[J]. Appl Catal B: Envir, 1996, 8(3): 217-227.
- [6] Teraoka Yasutake, Nakano Koji, Shangguan Wenfeng, et al. Simultaneous catalytic removal of nitrogen oxides and diesel soot particulate over perovskite-related oxides [J]. Catal Today, 1996, 27(1/2): 107-113.
- [7] a. Sayle D C, Maicaneanu S A, Watson G W. Atomistic models for CeO₂(111), (110), and (100) nanoparticles, supported on yttrium-stabilized zirconia [J]. J Amer Chem Soc, 2002, 124(38): 11429-11439.

b. Shi Shao-fei, Wang Yn-qi, Ma Jin-cheng, *et al.* The preparation and performance of Ni-La/Ce_xZr_{1-x}O₂ catalysts for coupled methane partial oxidation/CH₄-CO₂ reforming to syngas[J]. *J Mol Catal* (*China*)(分子催化), 2013, **27**(6): 539-547.

c. Liu Hao-yue, Fei Zhao-yang, Dai Yong, *et al.* Structure characterization and catalytic performance of high surface area Ce_xTi_{1-x}O₂ catalysts in HCl oxidation[J]. *J Mol Catal* (*China*)(分子催化), 2014, **28**(4): 329-335.

[8] a. Bueno-Lo' pez A, Krishna K, Makkee M, Jacob A. Moulijn. Active oxygen from CeO₂ and its role in catalysed soot oxidation [J]. Catal Lett, 2005, 99(3/4): 203-205.

b. LiHui-juan, Jiang Xiao-yuan, Zheng Xiao-ming. Non-thermal-plasma-combined with selective catalytic reaction of NO by CH_4 over $CuO/TiO_2/\gamma$ -Al₂O₃ catalyst[J]. *J Mol Catal* (*China*)(分子催化), 2014, **28**(2): 157-164.

c. Lin Jun-min, Fu Ming-li, Zhu Wen-bo, *et al.* An investigation of surface reactive species on $MnO_{x(0.4)}$ -CeO₂ catalyst towards soot oxidation[J]. *J Mol Catal (China)* (分子催化), 2014, **28**(2): 165-173.

d. LiuPeng-fei, luo Xiao-rong, He Kai, *et al.* Effects of surfactants on the structure and catalytic performance of Fe-Mn/ZSM-5/CC monolithic honeycomb catalyst[J]. *J Mol Catal* (*China*)(分子催化), 2014, **28**(3): 227-233.

- [9] Zou Gu-chu, Chen Ming-xia, Shangguan Wen-feng. Promotion effects of LaCoO₃ formation on the catalytic performance of Co-La oxides for soot combustion in air [J]. *Catal Comm*, 2014, **51**: 68-71.
- [10] Yu Hua-liang(俞华良), Chen Ming-xia(陈铭夏), Zou Gu-chu(邹谷初), et al. Simultaneously catalytic removal of diesel particulates and NO_x on K/LiCoO₂ catalysts (K/LiCoO₂ 的制备及其同时催化去除碳烟和 NO_x 的 性能研究)[J]. J Mol Catal (分子催化), 2013, 27 (1): 49-54.
- [11] Teraoka Y, Shangguan W F, Kagawa S. Reaction mechanism of simultaneous catalytic removal of NO and diesel soot particulates [J]. Res Chem Inter, 2000, 26 (2): 201-206.
- [12] Trovarelli A, Boaro M, Rocchini E, et al. Some recent developments in the characterization of ceria-based catalysts [J]. J Allo Comp, 2001, 323/324(4): 584–591.
- [13] Zou Gu-chu, XuYao, Wang Shu-jie, et al. The synergistic effect in Co-Ce oxides for catalytic oxidation of diesel soot [J]. Catal Sci Technol, 2015, doi: 10.1039/ C4CY01141D.
- [14] He H, Dai H X. Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of REbased (RE = Ce, Pr) solid solutions [J]. *Catal Today*, 2004, 90(3/40): 245-254.
- [15] Xie Xing-xing(谢兴星), Fei Zhao-yang(费兆阳), Dai yong(戴勇), et al. Structure of ceria-based mixed oxides and its influence on HCl catalytic oxidation performance(铈基复合氧化物的结构及其对 HCl 催化氧 化性能的影响)[J]. J Mol Catal(分子催化), 2014, 28(6): 507-514.
- [16] Ji Y, Zhao Z, Duan A J, et al. Comparative study on the

formation and reduction of bulk and Al_2O_3 -supported cobalt oxides by H₂-TPR technique [J]. *Phys Chem C*, 2009, **113**(17): 7186.

- [17] Luo J Y, Meng M, Zha Y Q, et al. A comparative study of Pt/Ba/Al₂O₃ and Pt/Fe-Ba/Al₂O₃ NSR catalysts: New insights into the interaction of Pt-Ba and the function of Fe [J]. Appl Catal, 2008, 78(1/2): 38-52.
- [18] Qiu L M, Liu F, Zhao L H, et al. Comparative XPS study of surface reduction for nano-crystalline and microcrystalline ceria powder [J]. Appl Surf Sci, 2006, 252 (14): 4931-4935.
- [19] Pfau A, Schierbaum K D. The electronic structure of stoichiometric and reduced CeO₂ surfaces: an XPS, UPS and HREELS study [J]. Surf Sci., 1994, **321** (1/2): 71-80.
- [20] Lin Jun-min(林俊敏), Fu Min-li(付名利), Zhu Wenbo(朱文波), et al. An investigation of surface reactive species on MnO_x(0.4)-CeO₂ catalyst towards soot oxidation(氧化碳烟的 MnO_x(0.4)-CeO₂ 催化剂表面活性 物种研究)[J]. J Mol Catal(分子催化), 2014, 28 (2): 165-173.
- [21] Ming Cai-bing(明彩兵), Ye Dai-qi(叶代启), Liang

Hong(梁红), et al. Catalytic combustion performance of soot over cerium-based transition metal composite oxide catalysts(过渡金属-铈复合氧化物对碳烟的催化燃烧性能和表征)[J]. Acta Sci Circum (环境科学学报), 2010, **30**(1): 158-164.

- [22] Oconnell M, Norman A K, Huttermann C F, et al. Catalytic oxidation over lanthanumtransition metal perovskite materials [J]. Catal Today, 1999, 47 (1/4): 123–132.
- $\label{eq:constraint} \begin{array}{l} [23] & Taguchi H, Kido H, Tabata K. Relationship between crystal structure and electrical property of K_2NiF_4-type (Ca_{1-x}Nd_{1+-x}) CoO_{4-\delta} [J]. Phys, 2004, 344 (1/4): 271-277. \end{array}$
- [24] Ming Cai-bing(明彩兵), Ye Dai-qi(叶代启), Bai Yuxian(拜玉贤), et al. Catalytic activity of ceria-zirconia solid solution-supported LaCoO₃ on soot and characterization(铈锆固溶体负载 LaCoO₃ 催化去除碳烟的性能和 表征)[J]. Envir Engin(环境工程学报), 2010, 4 (10): 2296-2300.
- [25] Fino D, Russo N, Saracco G. The role of suprafacial oxygen in some perovskites for the catalytic combustion of soot [J]. J Catal, 2003, 217(2): 367–375.

Ce-based Catalysts for Simultaneous Removal of Both Diesel Soot and NO_x

WANG Shu-jie, ZOU Gu-chu, XU Yao, CHEN Ming-xia, SHANGGUAN Wen-feng^{*}, EINAGA Hisahiro, TERAOKA Yasutake

(1. Research center for combustion and environment technology, Shanghai Jiao Tong University, Shanghai 200240, China;

2. Faculty of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan)

Abstract: Ce-based oxides were prepared by citric acid complex method and characterized by nitrogen physisorption, XRD, BET, H₂-TPR and XPS; their catalytic performances in simultaneous removal of diesel soot and NO_x were investigated on a thermogravimetric apparatus and a tubular reactor. $Co_{0.1}/CeLa_{0.05}$ prevailed over all the detected materials in catalytic performance for simultaneous removal of soot and NO_x. T₅₀ of this catalyst (temperature for 50% soot combustion) was 301 °C, and the yield of N₂ was 41.4%. A majority of cobalt oxides were dispersed on the surface of Ce-La solid solution. The mutual transformation between Co³⁺ and Co²⁺ enhanced the redox ability and oxygen storage capacity of pure ceria oxide, achieving lower temperature of combustion. Cerium-cobalt complex oxide doped with lanthanum presented a tremendous increase of surface area, leading to higher yield of N₂. The formation of trace amount of LaCoO₃ promoted oxygen vacancies creation, thus affecting positively to the soot combustion activity.

Key words: catalytic removal; Ce-based complex oxides; soot; NO_x ; citrate acid complex method