文章编号:1001-3555(2014)03-0242-09

载体对 Pt 催化剂在一甲胺湿式氧化中的催化性能影响研究

宋爱英^{1,2,3},吕功煊^{1,*}

(1. 中国科学院兰州化学物理研究所 羰基合成与选择氧化国家重点实验室,甘肃 兰州 730000;

2. 甘肃省疾病预防控制中心理化实验室,甘肃兰州730020;3. 中国科学院大学,北京100049)

摘要:采用浸渍法制备了 Pt/AC, Pt/ZrO₂, Pt/Al₂O₃ 催化剂,并研究了其对一甲胺湿式氧化(CWAO)反应的催化 性能.结果表明:载体对 Pt 的催化活性具有十分明显的影响,当 Pt 负载到活性炭(AC)载体表面时具有最佳的催 化活性,其次是氧化锆,而当 Pt 负载到氧化铝载体表面时,其催化活性最低.一甲胺在 Pt/AC, Pt/ZrO₂, Pt/ Al₂O₃ 催化剂表面被矿化所需最低温度分别为 200, 250 和 280 ℃. Pt/AC 催化剂优异的催化活性主要归因于 Pt 与 载体间的弱相互作用、活性炭的大比表面积以及载体自身具有一定的催化活性.

关键词: 铂; 载体效应; 活性炭; 氧化锆; 氧化铝; 催化湿式氧化; 一甲胺

中图分类号: 0643.32 文献标志码: A

随着化工业迅速发展,大量有机废水被排放到 环境,造成了严重污染.由于化工废水中有机污染 物浓度范围较宽,通常具有一定毒性,因此传统水 净化处理技术无法对其进行有效去除^[1-5].催化湿 式氧化(CWAO)是一种新型高效的水净化处理技 术,在较温和条件下(80~300 °C,0.1~6 MPa), 一定浓度(化学耗氧量 COD, 5~100 g/L)的多种有 机污染物可被催化剂表面产生的活化氧物种氧化成 易于微生物降解处理的中间产物或绿色无毒的 CO_2 , N_2 和 H_2O ,已被广泛用于废水中多种有机污 染物的净化处理^[6-16],具有很好的应用前景.

贵金属多相催化剂在许多反应中均表现出了优 异的催化活性,被广泛用于燃料电池^[17],裂解水 产氢等重要领域^[18-22].在 CWAO 反应过程中,贵 金属多相催化剂具有活性高,稳定性好,易于回收 利用和再生等优点^[23-25],另外,此类催化剂的催化 活性可以通过选择合适的载体、前驱体、制备方法 和引入第二组份等手段来进行有效调控.其中,选 择合适的载体是调控此类催化剂活性简便且行之有 效的方法之一^[26-32].

在含氮化合物的 CWAO 反应中,由于 Pt 具有 优异的催化活性和很好的稳定性,同 Ru 和 Pd 是目 前该领域研究最多的贵金属^[33-36].另外,一甲胺 是分子结构最为简单的脂肪族胺类化合物,同时含 有碳和氮原子.以一甲胺为反应底物,可同时探讨 碳和氮原子在 CWAO 过程中的降解规律.因此,在 本实验中,我们采用浸渍法将活性组分 Pt 分别负 载在 3 种完全不同的载体(AC, ZrO₂, Al₂O₃)表面, 系统考察了 3 种催化剂对一甲胺湿式氧化的催化性 能.

1 实验部分

1.1 催化剂制备

活性炭载体经浓硝酸回流处理后,用大量蒸馏 水洗涤除去无机离子,最后于300℃焙烧6h,以除 去易挥发性物质,提高活性炭载体的稳定性.其余 载体未经处理直接使用.Pt/AC,Pt/ZrO₂,Pt/ Al₂O₃催化剂采用浸渍法制备,以H₂PtCl₆・6H₂O 作为Pt前驱体.所有催化剂中金属负载量均固定 在5%,具体制备过程为:将10g载体浸渍于10mL 含有所需浓度的H₂PtCl₆溶液中浸渍过夜,后将催 化剂前驱体于120℃干燥8h,再在空气气氛下 300℃焙烧6h,最后在氢气氛中(流量保持在40 mL/min)300℃还原8h即可.

作者简介: 宋爰英(1977-), 男, 博士.

* 通讯联系人, Tel:(0931)4968178;Email:gxlu@lzb.ac.cn.

收稿日期: 2014-04-15;修回日期: 2014-05-10.

基金项目:国家重点基础研究发展计划(2013CB632404, 2012AA051501);国家自然基金(21373245, 21173242);甘肃省科技支撑计划项目 (1304FKCA085).

1.2 催化活性评价

催化剂的催化活性评价在电脑全自动数控式固 定床反应器(中国天津鹏翔科技有限公司)上进行, 反应温度范围为 130~250 ℃,升温速率为 10 ℃/ min.降温速率约为1℃/min. 主要流程为:将一定 浓度的一甲胺原料液(2400±120 mg/L)经蠕动泵 (Lab Alliance Series I, USA) 输送至预热器(180 ℃)进行汽化,让一甲胺和水蒸汽的混合物与氧气 (300 mL/min)在T接头处充分混合,然后导入装有 10 mL 催化剂的反应管中在设定温度下进行反应. 反应后混合物经冷阱冷却, 气液分离器分离后, 液 体从排液管底端导入收集瓶,每24h进行一次采 样,即每设定一次温度,将采集后12h内所产生的 反应液,以供对反应液中总有机碳(Total organic carbon, TOC), NH₃, NO₂⁻和 NO₃⁻含量进行分析测 定. 催化剂活性测试过程中, 反应液的 TOC, NH,, NO, 一和 NO, 一含量直接进行测定, 生成 N, 的物质量 通过"N"原子守恒计算得出: molN₂=(molMA_{converted}molNH₃-molNO₂⁻-molNO₃⁻)/2. 一甲胺转化率及含 氮产物产率通过以下方程式进行计算.

$$\begin{split} X_{-MA}(\%) &= (1 \text{-} TOC_{determine} / TOC_{initial}) \times 100\% \\ Y_{nitrogen}(\%) &= (molMA_{converted} \text{-} molNH_3 \text{-} molNO_2^{-} \text{-} molNO_3^{-}) \times 100\% / molMA_{initial} \end{split}$$

 $Y_{\text{ammonia}}(\%) = (\text{molNH}_3/\text{molMA}_{\text{initial}}) \times 100\%$ $Y_{\text{nitrite}}(\%) = (\text{molNO}_2^{-}/\text{molMA}_{\text{initial}}) \times 100\%$

 $Y_{nitrate}(\%) = (molNO_3^-/molMA_{initial}) \times 100\%$ 其中:

TOC_{determine}:收集液的 TOC 浓度, mg/L; TOC_{initial}:原料液的 TOC 浓度, mg/L;

molMA_{initial}:初始原料液中 MA 所含 N 的 mol 数;

molMA_{converted}:反应中转化一甲胺的物质的量; molNH₃:氨物质的量; molNO₂⁻:亚硝酸根物质的量; molNO₃⁻:硝酸根物质的量.

1.3 催化剂表征

X射线光电子能谱分析在 K-Alpha-surface Analysis 光电子能谱仪(热电科技公司)上进行(Mg 靶, 谱峰位置以 C 1s 284.6 eV 校正); XRD 晶相分 析在 Rigaku B/Max-RB 型 X 射线粉末衍射仪(日本 电子公司, 日本)上进行(Cu Kα, 管电流 40 mA, 管电压40 kV); TOC 在总有机碳氮测定仪(Analytik Jena,德国)上进行测定;电子透射显微镜图片在 Tec-nai-G²-F30 型高分辨透射电镜(FEI 公司, 美 国)上进行拍摄,加速电压为 300 kV; BET 比表面 积、孔容和平均孔径在-196 ℃液氮温度下, 以 N₂ 为吸附质,在 Micromeritics ASAP2010 型比表面仪 上进行测定;程序升温还原在自建装置上进行:称 取50 mg 催化剂置于内径为4 mm 的石英反应管 中, 以 5% H₂/Ar(流量 15 mL/min)为还原气, 从 50 ℃程序升温至 500 ℃, 升温速率为 10 ℃/min, 以热导池为检测器. 催化剂表面的 CO 吸附量在 Micromeritics ChemiSorb 2750 型物理化学吸附仪(美 国麦克仪器公司)上进行测定. 收集液中的 NH₃, NO, 和 NO, 含量按照国标方法(GB/T 5750-2006) 中的分光光度法进行测定.

2 结果与讨论

2.1 温度对催化剂活性影响

图 1 和 2 分别为温度对一甲胺转化率和 N₂ 产 率的影响结果.可以看出,当一甲胺被彻底矿化, N₂ 产率接近100%时,Pt/ZrO₂和Pt/Al₂O₃所需温

Fig. 1 Influence of the temperature on MA conversion in CWAO of MA over

(a) Pt/AC, (b) Pt/ZrO₂, and (c) Pt/Al₂O₃

Fig. 2 Influence of temperature on the nitrogen gas yield in CWAO of MA over (a) Pt/AC, (b) Pt/ZrO₂, and (c) Pt/Al₂O₃

度分别为 250(1b, 2b)和 280 °C(1c, 2c),而 Pt/ AC 仅需 200 °C(1a, 2a),与 Pt/ZrO₂和 Pt/Al₂O₃ 相比,一甲胺被彻底矿化所需温度分别降低了 50 和 80 °C,充分说明载体性质对 Pt 在一甲胺湿式氧 化过程中的催化性能具有十分显著的影响:以活性 炭为载体时 Pt 具有最佳的催化活性,以 ZrO₂为载 体时其具有中等催化活性,而以 Al₂O₃为载体时 Pt 则表现出了最低的催化活性.另外,我们还对载体 的催化活性也进行了考察,结果发现:在 200 °C 活 性炭存在时,一甲胺的转化率约为 10%,而其余两 种载体没有表现出任何催化活性.因此,Pt/AC 催 化剂优异的催化活性与载体自身具有一定的催化活 性有关.

有趣的是,在升降温过程中,一甲胺转化率和 N₂ 产率均表现出了明显的迟滞效应,且在降温过 程中一甲胺转化率和 N₂ 产率要明显高于升温过程, 以 Pt/AC 为例,当温度从 190 降到 160 ℃时,一甲 胺转化率从 99% 降到 4%;但当温度从 160 升到 190 ℃时,一甲胺转化率却从 4% 增至 83%,要使 一甲胺转化率重新达到 99%,则需要将温度升至 200 ℃,说明该反应遵循化学吸附-脱附机理^[36]. 合理的解释是:温度较高时,催化剂表面活化氧物 种浓度较高,当温度下调至某一数值时,催化剂表 面活化氧物种脱附需要一定时间才能达到新的平 衡;相应地,当温度上调至某一数值时,催化剂表 面对氧的吸附与活化氧物种浓度的增加也需要一定 时间,由于活化氧物种将一甲胺分子主要氧化成 CO₂ 和 N₂,因此,在升降温过程中一甲胺转化率和 N₂产率均出现了明显的迟滞效应.

图 3 为温度对 NH₃ 产率的影响结果.可以看 出,在较低温度时,由于 C—N 键断裂会形成大量 NH₃,随温度逐渐升高,NH₃ 被进一步氧化为 N₂, 且深度氧化产物 NO₂⁻和 NO₃⁻的产率也有所增加. 图 4 和 5 为温度对 NO₂⁻和 NO₃⁻产率的影响结果. 可以看出,在本实验中仅有微量 NO₂⁻和 NO₃⁻副产 物生成.

图 3 温度对 NH, 产率影响

Fig. 3 Influence of the temperature on ammonia yield in CWAO of MA over

(a) Pt/AC, (b) Pt/ZrO₂, and (c) Pt/Al₂O₃

Fig. 5 Influence of the temperature on nitrate yield in CWAO of MA over (a) Pt/AC, (b) Pt/ZrO₂, and (c) Pt/Al₂O₃

2.2 液时空速对催化剂活性影响

图 6 和 7 为液时空速(LHSV)对一甲胺转化率 和 N₂ 产率的影响结果.可以看出,随 LHSV 的提 升,一甲胺转化率和 N₂ 产率逐渐下降,且在较低 温度时下降更快,说明温度越低,LHSV 对一甲胺 转化率和 N₂ 产率的影响将愈加明显.从LHSV 对 NH₃ 产率影响结果(图 8)可以看出,随 LHSV 提 升,NH₃ 产率出现了先增大后减小的变化规律,其 作用与温度对 NH₃ 产率的影响结果类似,说明温度 和 LHSV 均可决定 O₂(活化)/MA 的比值,且 高 $O_2(活化)/MA$ 比值有利于 N_2 和 NO_3^- 的形成 (图 7 和 10),而较低的 $O_2(活化)/MA$ 比值则有利 于 NH_3 和 NO_2^- 的形成(图 8 和 9).最后值得指出 的是,在本实验中 CO_2 和 N_2 始终为一甲胺氧化的 主要产物,且 NO_2^- 和 NO_3^- 副产物的含量均明显低 于在高压釜中进行的含氮化合物 CWAO 反应过程 中产生的此类副产物的含量^[37],说明 NO_2^- 和 NO_3^- 的生成很可能属于体相反应,采用气固接触方 式,使反应在催化剂表面进行,可有效避免此类副 产物生成.

Fig. 10 Influence of the flow rate on nitrate yield in CWAO of MA over (a) Pt/AC, (b) Pt/ZrO₂, and (c) Pt/Al₂O₃

2.3 催化剂表征结果

表1为不同载体及催化剂样品的织构性质.由表1可见,载体AC,ZrO₂和Al₂O₃的比表面积分别为919,34和163m²/g,负载金属后,载体的比表面积分降至865,31和153m²/g,但与载体相比,催化剂的孔容和平均孔径均没有发生明显变化,表明金属活性组分被成功地负载在了载体表面.

表1载体和催化剂比表面积,孔容和孔径尺寸表征

Гabl	le	1 (Charact	terizatio	on of	$\operatorname{supports}$,	Pt/AC,	Pt/ZrO_2 ,
------	----	-----	---------	-----------	-------	-----------------------------	--------	--------------

and $PV AI_2 O_3$ by DE1 method								
C 1	BET	Porevolume	Poresize					
Samples	$/(m^2\boldsymbol{\cdot}g^{-1})$	$/(\mathrm{cm}^3\boldsymbol{\cdot}\mathrm{g}^{-1})$	∕ nm					
AC	919	0.46	20					
ZrO_2	34	0.16	19					
Al_2O_3	163	0.48	12					
Pt/AC	865	0.44	20					
Pt/ZrO ₂	31	0.15	18					
Pt/Al ₂ O ₃	153	0.45	12					

为进一步考察载体与活性组分之间的相互作用,对催化剂样品进行了 H₂-TPR 表征,结果见图 11.可以看出,未经还原处理的 Pt/AC, Pt/ZrO₂ 和 Pt/Al₂O₃ 催化剂分别在 223, 246, 243 ℃处出现了 还原峰,峰形较宽且不完全对称,表明焙烧后 PtO_x/PtO_xCl_y 物种颗粒尺寸分布范围较宽,且催化 剂前驱体中 PtO_x/PtO_xCl_y 物种与载体之间的相互作 用较弱^[36].另外,当 PtO_x/PtO_xCl_y 负载在活性炭表 面时更易被 H₂ 还原.

为了获得催化剂表面 Pt 物种的化学状态, 对 催化剂进行了 X-ray 光电子能谱(XPS)表征. 图 12 为3种催化剂中 Pt 元素的电子结合能图谱,催化 剂 Pt/AC 的 Pt 4f_{7/2} 为 70.9 和 75.3 eV, 可分别归 属于 Pt^0 和 PtO_2 , 其中 Pt^0 与金属铂片的 $4f_{7/2}$ 结合 能非常接近,说明 Pt 颗粒与活性炭载体之间的相 互作用较弱. 催化剂 Pt/Al₂O₃ 也出现了 Pt⁰ 的信号 峰,但该峰位于71.8 eV 处,与 Pt 金属的特征 XPS 值接近,但向高场位移约0.9 eV.已有文献报道, 当 Pt 分散到不同氧化物载体表面上时, 金属 Pt 的 结合能数值不同,本文中的结合能数值与文献报道 数值比较接近^[37],这表明在 Pt/Al₂O₃ 催化剂表面 Pt 原子附近存在某些吸电子基团,并发生了一定程 度的电荷转移,致使表面 Pt 金属带有部分正电荷. 另外, Pt/ZrO, 催化剂仅在 73.2 eV 处出现了 PtO 的信号峰, 与纯 PtO 的 4f72 结合能接近, 但向低场 移动了约0.3 eV, 说明在催化剂制备过程中铂氧化 物没有被彻底还原或新鲜催化剂中表面 Pt 金属可 能被空气部分氧化.

图 13 为催化剂的 XRD 谱.可以看出, Pt/AC 催化剂除在 2*θ*=25°处出现了一个无定形 C 的弥散 峰之外,还在 2*θ*=39.7°,46.3°,67.6°和 81.3°处 出现了很强的 Pt 金属衍射峰,分别对应于面心立 方晶体 Pt 的(111),(200),(220)和(311)晶面. 其余 2 个催化剂均在 2*θ*=39.7°处出现了较为弥散 的Pt金属特征衍射峰,其中Pt/Al₂O₃催化剂的Pt

特征衍射峰与载体氧化铝的特征衍射峰(2θ =38.5°)

有部分重叠. 根据 Scherrer 公式($d = (k \times \lambda)/(B \times \cos \theta)$,其中 k = 0.89, $\lambda = 0.154$, B = 0.024, $\theta = 19.85$)可以计算出在 Pt/AC 催化剂中 Pt 晶粒的平 均直径为 6.2 nm.

图 14 是催化剂样品的透射电镜(TEM 和 HR-TEM)照片,清晰直观地反映了样品中 Pt 颗粒的分 散情况和晶体类型.从图 14a, b, c 可以看出,金属 颗粒较为均匀地分散在载体表面,并伴有一定的烧 结和团聚.随机选取 102 个金属晶粒,进行粒径统 计分析(图 14a, b, c)后发现,催化剂 Pt/AC, Pt/ ZrO₂ 和 Pt/Al₂O₃ 中 Pt 晶粒的平均直径分别为 6.4, 3.0 和 4.6 nm,其中 Pt/AC 催化剂中 Pt 晶粒的大 小与 XRD 的计算结果相符.另外,从催化剂的 HR-TEM 图像(图 14a1, b1, c1)可以看出,3 种载体表 面均出现了 Pt 的晶体结构,其特征晶格条纹间距 为 0.226 nm,对应于面心立方晶体 Pt 的(111)晶 面,该结果与 XRD 表征结果完全一致.

图 14 催化剂(a) Pt/AC, (b) Pt/ZrO₂ 和(c) Pt/Al₂O₃ 的 TEM 照片和粒径分布图 Fig. 14 TEM (a, b, and c), HRTEM (a1, b1, and c1) images and particle size distribution of (a) Pt/AC, (b) Pt/ZrO₂, and (c) Pt/Al₂O₃

£

3 结论

载体性质对 Pt 的催化活性具有十分重要的影响,活性炭是 Pt 的最佳载体,其次是氧化锆,当 Pt 负载在氧化铝表面时表现出了最低的催化活性.在 升降温过程中,一甲胺转化率和 N₂ 产率均出现了明显的迟滞效应,说明一甲胺的 CWAO 反应遵循化学吸附-脱附机理.在本实验条件下,仅有微量 NO₂⁻和 NO₃⁻副产物形成,说明此类副产物的形成过程可能属于体相反应,采用气固接触方式,使反应在催化剂表面进行,可有效避免此类副产物生成.

参考文献:

- Damianovic M H R Z, Moraes E M, Zaiat M, Foresti E.
 Pentachlorophenol (PCP) dechlorination in horizontal-flow anaerobic immobilized biomass (HAIB) reactors
 [J]. Bioresource Technol, 2010, 100(19): 4361-4367.
- [2] Wei H Z, Yan X M, Li X R. The degradation of isophorone by catalytic wet air oxidation on Ru/TiZrO₄ [J]. J Hazard Mater, 2013, 244/245 (15): 478-488.
- [3] Pophali G R, Hedau S, Gedam N, et al. Treatment of refractory organics from membrane rejects using ozonation
 [J]. J Hazard Mater, 2011, 189(1/2): 273-277.
- [4] Xie Yan-zhao(谢艳招). 在 Pt/TiO₂ 上光催化降解污水中的对氟苯甲酸[J]. *J Mol Catal(China)*(分子催化), 2012, 26(5): 449-455.
- [5] Li Li(李 莉). CTAB 作用下纳米复合材料 ZnO-TiO₂ 制备与多模式光催化降解罗丹明 B[J]. J Mol Catal (China)(分子催化), 2013, 27(5): 474-482.
- [6] Mishra V S, Joshi J B, Mahajani V V, Wet air oxidation
 [J]. Ind Eng Chem Res, 1995, 34(1): 2-48.
- [7] Phull K K, Hao O J. Nitrotoluenesulfonic acid: UV, IR, and NMR properties and rate studies of wet air oxidation
 [J]. Ind Eng Chem Res, 1993, 32(8): 1772-1779.
- [8] Luck F. Wet air oxidation: past, present and future [J]. Catal Today, 1999, 53(1): 81-91.
- [9] Lin S H, Ho S J. Catalytic wet-air oxidation of high strength industrial wastewater [J]. Appl Catal B: Environ, 1996, 9(1/4): 133-147.
- [10] Levec J, Pintar A. Catalytic wet-air oxidation processes: a review [J]. Catal Today, 2007, 124 (3/4): 172 – 184.
- [11] Kim K H, Ihm S K. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review [J]. J Hazard Mater, 2011, 186 (1): 16-34.

- [12] Zhang Xiao-min(张小明), Wei Ri-chu(魏日出), Chen Hong-lin(陈洪林). 湿式催化氧化处理含高浓度 甲醛的草甘膦废水[J]. *J Mol Catal(China)*(分子催 化), 2013, 27(4): 323-332.
- [13] Oliviero L, Barbier Jr J, Duprez D. Wet oxidation of nitrogen-containing organic compounds and ammonia in aqueous media [J]. Appl Catal B: Environ, 2003, 46 (3): 163-184.
- [14] Liu W M, Hu Y Q, Tu S T. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent [J]. J Hazard Mater, 2010, 179(1/3): 545-551.
- [15] Zhao S, Wang X H, Huo M X. Catalytic wet air oxidation of phenol with air and micellar molybdoyanadophosphoric polyoxometalates under room condition [J]. Appl Catal B, 2010, 97(1): 127-134.
- [16] Grosjean N, Descorme C, Besson M. Catalytic wet air oxidation of N, N-dimethylformamide aqueous solutions: deactivation of TiO₂ and ZrO₂-supported noble metal catalysts [J]. Appl Catal B, 2010, 97(1/2): 276-283.
- [17] Jusys Z, Behm R J. Methanol oxidation on a carbon-supported Pt fuel cell catalyst a kinetic and mechanistic study by differential electrochemical mass spectrometry
 [J]. J Phys Chem B, 2001, 105(44): 10874-10883.
- [18] Sun Hai-Jie(孙海杰), Li huai-hui (李帅辉), Tian Xiang-yu(田翔宇), et al. 助剂 Fe 和反应修饰剂修饰 的 Ru 催化剂上苯选择加氢制环己烯[J]. J Mol Catal (China)(分子催化), 2013, 27(4): 362-370.
- [19] Xu Xiao-bo(徐晓波). Pt/TiO₂ 催化剂的制备及其在 氨催化氧化中的应用[J]. J Mol Catal(China)(分子 催化), 2014, (1): 75-81.
- [20] Kong Xiang-guo(孔祥国), Hu Bo(胡波), Zjuo Guang-lan(卓广澜).改性 VPO 催化剂选择性催化氧 化苯乙烯合成苯甲醛[J]. J Mol Catal(China)(分子 催化), 2013, 27(1): 23-29.
- [21] Li Ping-hong(李品红), Zhu Gang-li(朱刚利), Song Huan-ling(宋焕玲), Xia Chu-gu(夏春谷). 钾对铬催 化剂脱氢环化反应的影响[J]. J Mol Catal(China) (分子催化), 2013, 27(2): 131-137.
- [22] He Run-xia (何润霞), Zhi Ke-duan (智科端), Liu Quan-sheng(刘全生), et al. 前体法制备铜锰催化剂 及其变换反应催化性能的研究[J]. J Mol Catal(China) (分子催化), 2012, 26(6): 522-528.
- [23] Tabata S, Nishida H, Masaki Y, et al. Stoichiometric photocatalytic decomposition of pure water in Pt/TiO₂ aqueous suspension system [J]. Catal Lett, 1995, 34 (1/2): 245-249.

- [24] Wang Yun (王 赟), Liao Wei-ping (廖卫平), Suo Zhang-huai(索掌怀). 炭黑负载 Pt-Fe 双金属催化剂 对甲醇的电催化氧化性能[J]. J Mol Catal (China) (分子催化), 2013, 27(4): 356-361.
- [25] Liang Chang-hai (梁长海), Liu Qian (刘倩), Li Chuang(李闯), Chen Xiao(陈霄). 纳米 Pd 的形貌 和尺寸可控制备及其1,4-丁炔二醇加氢性能[J]. J Mol Catal(China)(分子催化), 2013, 27(4): 316-322.
- [26] Xu Li-min(徐黎明).载体及改性方法对硫化型催化 剂加氢性能的影响[J]. J Mol Catal(China)(分子催 化), 2012, 26(5): 436-441.
- [27] Joo S H, Choi S J, Oh I, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles [J]. Nature, 2001, 412: 169–172.
- [28] Schauermann S, Nilius N, Shaikhutdinov S, et al. Nanoparticles for heterogeneous catalysis: new mechanistic insights [J]. Acc Chem Res., 2013, 46(8): 1673-1681.
- [29] Marcus V. Castegnaro, Alex S. *et al.* On the Reactivity of Carbon Supported Pd Nanoparticles during NO Reduction: Unraveling a Metal-Support Redox Interaction [J]. *Langmuir*, 2013, **29**(23): 7125–7133.
- [30] Prieto G, Martínez A, Murciano R, et al. Cobalt supported on morphologically tailored SBA-15 mesostructures: The impact of pore length on metal dispersion and catalytic activity in the Fischer-Tropsch synthesis [J]. Appl Catal A, 2009, 367(1/2): 146-156.

- [31] Vít Z, Gulková D, Kaluža L, et al. Mesoporous silica-alumina modified by acid leaching as support of Pt catalysts in HDS of model compounds [J]. Appl Catal B, 2010, 100(3/4): 463-471.
- [32] Zheng N, Stucky G D. A general synthetic strategy for oxide-supported metal nanoparticle catalysts [J]. J Am Chem Soc, 2006, 128(44): 14278-14280.
- [33] Liu W M, Hu Y Q, Tu S T. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent [J]. J Hazard Mater, 2010, 179 (1/3): 545-551.
- [34] Gallezot P, Chaumet S, Perrard A, et al. Catalytic wet air oxidation of acetic acid on carbon-supported ruthenium catalysts [J]. J Catal, 1997, 168(1): 104–109.
- [35] Gaálová J, Barbier Jr J, Rossignol S. Ruthenium versus platinum on cerium materials in wet air oxidation of acetic acid [J]. J Hazard. Mater, 2010, 181 (1/3): 633-639.
- [36] Song A Y, Lu G X. Enhancement of Pt-Ru catalytic activity for catalytic wet air oxidation of methylamine *via* tuning Ru surface chemical state and dispersion by Pt addition [J]. *RSC Adv*, 2014, 4(30): 15325-15331.
- [37] Olsson L, Fridell E. The influence of Pt oxide formation and Pt dispersion on the reactions NO₂ = NO+1/2O₂ over Pt/Al₂O₃ and Pt/BaO/Al₂O₃ [J]. J Catal, 2002, 210 (2): 340-353.

Support Effect on the Catalytic Activity of Pt Catalysts in Catalytic Wet Air Oxidation of Methylamine

SONG Ai-ying ^{1, 2, 3}, LU Gong-xuan ^{1, *}

(1. Lanzhou Institute of Chemical Physics, University of Chinese Academy of Sciences, Lanzhou 730000, China;
 2. Chemical Physics Laboratory, Gansu Provincial Center for Disease Control and Prevention, Lanzhou 730020, China;

3. University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: Pt/AC, Pt/ZrO_2 , and Pt/Al_2O_3 catalysts were prepared by impregnation method and their catalytic performances were comparatively investigated in catalytic wet air oxidation (CWAO) of methylamine (MA). The experimental results indicated that the catalytic activity of Pt for CWAO of MA was significantly influenced by the supports. Among as-prepared catalysts, Pt/AC demonstrated the best catalytic activity probably due to the weak interaction between Pt and the support, high surface area and catalytic activity of the support, meanwhile, the Pt/ZrO_2 was less active and the Pt/Al_2O_3 showed the lowest activity. The MA was completely mineralized at 200, 250, and 280 °C over Pt/AC, Pt/ZrO_2 , and Pt/Al_2O_3 catalysts, respectively.

Key words: Pt; support effect; activated carbon; zirconia; alumina; CWAO; MA