文章编号:1001-3555(2013)01-0049-06

$K/LiCoO_2$ 的制备及其同时催化去除碳烟和 NO_x 的性能研究

俞华良,陈铭夏*,邹谷初,袁 坚,上官文峰 (上海交通大学 燃烧与环境技术研究中心,上海 200240)

摘要:采用溶液燃烧法和浸渍法制备了铜铁矿结构的钴酸锂(LiCoO₂)及其负载 K 的系列催化剂样品,并通过 XRD、NO_x-TPD、H₂-TPR、程序升温反应等对其进行了结构表征与性能评价. 结果表明 LiCoO₂ 是一种能有效同时 去除碳烟(PM)和 NO_x 的催化剂; K 负载可提高其催化活性,其中 10% K/ LiCoO₂ 具有最低的 PM 起燃温度 (246 ℃)和最大 NO_x→N₂ 转化率(35.9%);催化剂表面生成的 O²⁻/O⁻活性氧物种以及较强的 NO_x 吸附存储能力 可能是 K/ LiCoO₂ 催化活性提高的原因.

关键词: 钴酸锂; 碳烟; NO_x; 催化去除

中图分类号: 0643.32 文献标志码: A

柴油发动机因其燃油经济性好、可靠性高、动力大、寿命长等优点,越来越受到人们的关注.但是柴油发动机尾气排放的主要污染物碳烟(PM)、NO_x所造成的环境污染问题也同样颇受关注.由于PM和NO_x在发动机缸内的生成机理存在 trade-off关系,很难通过缸内燃烧控制技术将两者同时去除.因此尾气后处理技术成为其满足日益严格的排放标准必不可少的手段.

自 1989 年 Yoshida^[1]提出在富氧条件下同时催 化去除 PM 和 NO_x 的理念以来,众多国内外的研究 结果表明^[2-4],在简单金属氧化物^[5-6]、钙钛矿型复 合氧化物^[7-8]、尖晶石型复合氧化物^[9]、水滑石层 状氧化物^[10-11]等催化剂的作用下,PM 氧化和 NO_x 还原可在相同温度区间内进行,即 PM 和 NO_x 可同 时催化去除.但设计开发低 PM 起燃温度和高 NO_x-N₂转化效率的催化剂仍然是该技术路线的关键. ABO₂ 铜铁矿型复合氧化物多用于发光材料、太阳 能电池、臭氧传感器等研究领域,用于汽车尾气污 染物去除方面的研究还比较少.2001 年,赵峰等合 成了 CuCrO₂、CuAlO₂ 等具有铜铁矿结构的氧化物 并考察其对 CO-NO 的催化去除性能,该类型复合 氧化物对 CO-NO 具有相当的氧化还原活性^[12]. 2006 年,Fino D 等将 LiCoO₂ 负载在壁流式捕集器 上进行柴油机尾气颗粒物去除的研究,获得了良好的催化效果^[13].为考察 ABO₂型复合氧化物对柴油机尾气排放 PM 和 NO_x 的同时催化去除性能,我们采用溶液燃烧法制备了 LiCoO₂ 及其负载不同比例 K 的系列催化剂,并通过 H₂-TPR, NO_x 吸脱附,程序升温反应等对其进行结构表征和性能评价.

1 实验部分

1.1 催化剂制备

LiCoO₂ 的制备:按化学计量比称取所需硝酸锂 (LiNO₃,国药,分析纯)、硝酸钴(Co(NO₃)₂,国 药,分析纯)和尿素(N₂H₄CO,国药,分析纯),其 中 N₂H₄CO 过量 100%(即按化学计量比称取所需 量的 2 倍).将上述原料分别溶于一定量的去离子 水中,均匀混合,配置成具有不同前驱体的浓缩水 溶液.将适量溶液倒入坩埚,置于温度 600 ℃的马 弗炉中进行燃烧反应.反应结束后继续在 600 ℃热 处理 30 min,随炉冷却至室温,得到 LiCoO₂ 催化剂 样品.

采用浸渍法对 LiCoO₂ 催化剂负载不同比例 K. 将 LiCoO₂ 粉末浸渍在含一定量乙酸钾(CH₃COOK, 国药,分析纯)溶液中,水浴搅拌蒸干,100 ℃干燥 过夜,300 ℃预烧2 h,700 ℃焙烧2 h,得到 K 质量

收稿日期: 2013-01-03;修回日期: 2013-01-31.

基金项目: 国家自然科学基金(20807027).

作者简介: 俞华良(1987-), 男, 硕士研究生.

^{*} 通讯联系人, E-mail: mxchen@sjtu.edu.cn.

分数为2.5%、5.0%和10%的催化剂样品,分别记为:2.5 K/LiCoO₂、5.0 K/LiCoO₂和10 K/LiCoO₂. **1.2 催化剂表征**

XRD 分析: 采用 BRUKERD Advance X-Ray Polycrystalline Diffractometer, 光源波长为 λ = 0.15406 nm,管压为40 kV,管流为20 mA,扫描速 度 6°/min,扫描角度从10°到80°. H₂-TPR 表征在 自制装置上进行,50 mg 催化剂样品在 N₂ 气氛下 400 ℃ 预处理 1 h. 待降到室温、基线走平稳 以后,切换为5% H₂/N₂,流速50 mL/min,从室温 升到 900 ℃,升温速度 10 ℃/min,使用 TCD 进行 检测.

NO_x-TPD 表征在连续流动固定反应器中进行. 取 0.1 g(粒径 0.45 ~ 0.28 mm)催化剂样品,Ar 气 保护下 200 ℃预处理 1 h 后,通入 120 cm³/min 的 NO-150 ppm+18% -O₂+Ar 吸附 1 h. 降温吹扫后, 以 5 ℃/min 的升温速率在 50 ~ 750 ℃ 进行程序升 温脱附,采用 NO_x 分析仪(Thermo environmental instruments, model 42i LS)进行在线监测.

1.3 催化剂活性评价

催化剂的催化活性采用程序升温反应(TPR)技术进行评价^[14],实验装置主要由气路控制系统、温度控制、催化反应器和测试分析系统组成.实验中使用 Degussa 公司生产的 Printex-U 碳黑代替柴油机排放颗粒物 PM. 催化剂和 PM 按质量比 20 : 1 混合研磨 10 min 后,取 0.33 g 放入石英反应器并在 He 气保护下 200 °C 预处理 1 h. 待降到 100 °C 后通入 20 mL/min 的所需反应气体,由 NO(0.25%)、 $O_2(5\%)$ 和 He 平衡气组成.以 1.6 °C · min⁻¹的升温速率进行程序升温反应,反应温度升至 700 °C,出口气体用岛津 GC-14B 气相色谱仪每隔 15 min 进行采样分析,其中 N_2 、 O_2 、NO 和 CO₂ 采用分子筛 MS-A 分离柱来进行分离, CO₂和 N_2 通过 P-Q 分离柱进行分离.

催化剂的活性通过碳烟的起燃温度(T_i)、最大 燃烧温度(T_m)和 NO→N₂的转化率 η 来评价.其 中, T_i 为 CO₂上升最大斜率的切线与零浓度相交的 温度; T_m 为曲线峰值对应的温度.NO→N₂的转化 率 η 按下式计算:

$$\eta = \frac{2[N_2]_{out}}{[NO]_{in}} \times 100\%$$
(1)

式中, [N₂]_{out} 为出口处的 N₂ 浓度, [NO]_{in} 为入口 NO 浓度.

2 结果与讨论

2.1 XRD 分析结果

图 1 为钴酸锂催化剂进行程序升温反应前后的 XRD 谱图比较. 从图中可以看出, 溶液燃烧法制备 的催化剂样品为 LiCoO₂,其(003)、(101)和(104) 等特征峰明确, 样品具有典型的六方层状结构, XRD 图谱中看不到明显的杂相存在. 催化剂在反应 后依然保持原有特征峰, 且峰形变得更尖锐, 表明 样品经过 700 ℃高温反应后结晶更好.

图 2 为 LiCoO₂ 负载不同比例 K 后的 XRD 谱 图. 从图中可以看出,负载 K 之后,催化剂的 XRD 谱图并未发生明显变化,没有出现归属于 K 氧化物 的衍射峰,表明负载的 K 均匀分散在 LiCoO₂ 表面. 对(003)晶面的特征峰进行放大比较可以发现,随 着 K 负载量的逐渐增加,特征峰逐渐往右偏移,可 能是由于 K 的负载导致 LiCoO₂ 晶格变形所致.

2.2 H₂-TPR 表征

图 3 为不同比例 K 负载的 K/LiCoO₂ 系列催化 剂的 H₂-TPR 结果图.图中可见,LiCoO₂的 H₂还原 峰主要出现 300 ~450 ℃范围,而 K/LiCoO₂ 样品则 在 280 ~700 ℃内出现了多个还原峰,并且随着 K 负载量的增加,还原峰面积略有增加,还原温度向 低温方向移动.据文献报道,H₂-TPR 过程中 100 ~ 450 ℃还原峰归属于催化剂表面的分子吸附氧物种 O₂⁻,450 ~700 ℃范围内的还原峰归属于氧空位上 的原子吸附氧物种 O²⁻/O⁻,大于 700 ℃的还原峰则

归属于晶格氧^[15].由此可知 LiCoO₂ 表面上的氧物 种以分子吸附氧 O₂ 为主,而 K/LiCoO₂ 上则同时存 在丰富的分子吸附氧物种 O₂ 和原子吸附氧物种 O²/O⁻.分析其原因,可能是由于催化剂负载 K 之 后,K 离子的断键作用导致 LiCoO₂ 表面形成新的 氧空位,同时 K 离子的给电效应弱化了催化剂的金 属氧键,促进了活性氧物种的迁移^[16].活性氧物 种的增加和易于迁移将有助于提高催化剂的催化氧 化性能.

2.3 NOx-TPD 表征

LiCoO₂及其负载 K 系列催化剂在 NO_x-TPD 过 程中的脱附产物主要为NO, 仅检测到微量NO, 图 4 为 NO₄-TPD 结果图. 从图中可以看出, NO₄ 脱附 峰主要分布在 200~350 ℃和 350~700 ℃区间,其 中200~350 ℃区间的脱附峰对应于表面吸附的 NO, 350~700 ℃区间的脱附峰对应于 NO, 分解产 生的 NO^[17]. 比较图中曲线发现, LiCoO₂ 上存在 NO₂的两种脱附峰,其中表面吸附 NO 略大于 NO₃⁻ 分解产生的 NO. 当催化剂负载 K 以后, 脱附峰以 NO₃分解产生的 NO 为主, 仅有少量的表面吸附 NO, 且脱附量明显增加. 随着 K 负载量提高, 脱附 峰面积也迅速增大, 脱附峰值温度随之升高. 表明 负载 K 后催化剂对 NO_x 的吸附能力得到了大幅提 升,主要以 NO₃ 的形式存储于催化剂表面. 已有的 研究结果表明,在富氧环境下,NO在低温时被氧 化为 NO, 并以 NO, 形式存储于催化剂上^[18], 高温 时分解放出大量 NO₂, 而 NO₂ 可以促进碳烟的催化 氧化,改善催化剂对碳烟催化起燃活性.

图 4 不同负载比例的 K/LiCoO₂ 系列催化剂的 NOx-TPD 比较 Fig. 4 NOx-TPD results of K/LiCoO₂ catalysts loaded by different mass ratio of K (a)LiCoO₂; (b)2.5K/LiCoO₂; (c)5K/LiCoO₂; (d)10K/LiCoO₂

2.4 催化剂活性评价

图 5 为 5% O₂ 气氛下,不同负载比例的 K/Li-CoO₂ 系列催化剂催化氧化 PM 生成 CO₂ 的结果比较.图 6 为 5% O₂+2500ppmNO_x 气氛下,催化剂催化氧化 PM 生成 CO₂ 同时还原 NO_x 生成 N₂ 的比较.

从图中可以看出,在5% O₂条件下,LiCoO₂催 化剂的 PM 起燃温度 T_{ig}约为 340 ℃左右,最大燃 烧速率对应温度 T_m约为 382 ℃,催化氧化反应在 500 ℃之前结束,负载 K 后样品的 T_{ig}和 T_m均略有 降低,见表 2.

在 O_2 + NO 气氛下, LiCoO₂ 催化剂对 PM 的催 化起燃温度 T_{ig} 约为 290 ℃,比只有 O_2 气氛时下降 了 50 ℃, T_m 和反应结束温度也相应降低. N_2 的生 成曲线与 CO₂ 具有相似的变化趋势和温度区间, NO_x-N₂ 最大转化率 η_{max} 约为 30.8%,此时也生成 了最大浓度的 CO₂.负载 2.5% K 后,催化剂的 T_{ig} 明显下降. 且随着 K 负载量的增加, T_{ig} 进一步降 低,从未负载前的 290 ℃降到负载 10% K 后的 246 ℃,最大燃烧温度 (T_m)从 356 ℃降到 308 ℃.而 NO→N₂ 的最大转化率 η_{max} 也随着 K 负载量的增加 略有提高,从 30.8% 变为 35.9%.

表2不同气氛下 K/LiCoO	,催化剂的性能评价结果
-----------------	-------------

Table 2 Catalytic activity of K/LiCoO2 catalysts in different atmosphere

Catalysts —	${ m T_{ig}}$	$ m T_{ig}/~\%$		T _m ∕ ℃	
	O_2	O ₂ +NO	02	O ₂ +NO	η_{max} / %
LiCoO ₂	340	290	382	356	30.8
2.5K/LiCoO ₂	329	269	382	333	33.5
5K/LiCoO2	321	258	382	332	35.3
10K/LiCoO ₂	315	246	382	308	35.9

从表 2 中可以看出,在两种气氛条件下催化剂 负载 K 后均可降低 PM 的起燃温度,且随着 K 负载

量增加 T_{ig} 逐渐降低.结合 H_2 -TPR 结果分析,其原因可能是由于催化剂负载 K 后产生大量氧空位,增

加了催化剂表面的原子吸附氧物种,而原子吸附氧 更有利于 PM 的催化氧化.同时,由于 K 离子的给 电效应弱化了催化剂的金属-氧键,促进了活性氧 物种的迁移,从而使得 O₂ 气氛下 PM 的催化起燃 活性得到提高.当导入 NO 后,负载 K 的催化剂表 面形成了大量硝酸盐物种(NO₃等),并参与 PM 的 催化氧化过程,从而提高了催化剂的催化活性^[19].

3 结 论

3.1采用溶液燃烧法合成的铜铁矿型 LiCoO₂ 是一种良好的 PM 和 NOx 同时催化去除催化剂, PM 起燃温度为 290 ℃,最大 NO_x→N₂转化率为 30.8%.

3.2 通过浸渍法对 LiCoO₂ 进行不同比例 K 负载后发现,部分 K 进入晶格,导致在 K/LiCoO₂ 样 品表面形成了更多的氧空位,从而生成大量的原子 吸附氧物种,促进了 PM 的催化氧化. 随着 K 负载 量增加, K/ LiCoO₂ 的催化活性逐渐提高.

3.3 随着 K 负载量增加,催化剂对 NO_x 的吸附 存储能力也相应增强,大量生成的 NO₃ 物种有利于 PM 和 NO_x 的同时催化去除.

参考文献:

- Yoshida K. Simultaneous reduction of NO_x and particulate emissions from diesel engine exhausts [C]. SAE Paper. Baltimore, 1989, 892046.
- [2] Shangguan W F, Teraoka Y, Kagawa S. Simultaneous catalytic removal of NO_x and diesel soot particulates over AB₂O₄ spinel-type oxides[J]. Applied Catalysis B: Environmental, 1996, 8(2): 217-227.
- [3] Teraoka Y, Nakano K, Shangguan W F, et al. Simultaneous catalytic removal of nitrogen oxides and diesel soot particulate over perovskite-related oxides [J]. Catalysis Today, 1996, 27(1/2): 107-113.
- [4] Shangguan W F, Teraoka Y, Kagawa S. Kinetics of soot-O₂, soot-NO and soot-O₂-NO reactions over spinel-type CuFe₂O₄ catalyst[J]. Applied Catalysis B: Environmental, 1997, **12**(2/3): 237-247.
- [5] Reichert D, Finke T, Atanassova N, et al. Global kinetic modeling of the reaction of soot with O₂ and NO_x on Fe₂O₃ catalyst[J]. Applied Catalysis B: Environmental, 2008, 84(3/4): 803-812.
- [6] Atribak I, Such-Basáñez I, Bueno-Lóez A, et al. Comparison of the catalytic activity of MO₂(M=Ti, Zr, Ce)

for soot oxidation under $NO_x/O_2[J]$. Journal of Catalysis, 2007, **250**(1): 78-84.

- [7] Liu J, Zhao Z, Xu C M, et al. Simultaneous removal of NO_x and diesel soot particulates over nanometric La_{2-x}K_xCuO₄ complex oxide catalysts [J]. Catalysis Today, 2007, 119(1/2/3/4): 267–272.
- [8] Wang Jun-li(王军利), Wang Hong(王虹), Sun Zhiqiang(孙志强), et al. Performance of La-K-Mn-O oxide catalysts for simultaneous removal of soot and NO_x from diesel engine exhausts(La-K-Co-Mn-O 钙钛矿型复合氧 化物同时去除碳颗粒和 NO_x 的性能)[J]. Environmental Pollution & Control(环境污染与防治), 2008, **30**(12): 40-42.
- [9] Fino D, Russo N, Saracco G, et al. Catalytic removal of NO_x and diesel soot over nanostructured spinel-type oxides[J]. Journal of Catalysis, 2006, 242(1): 38-47.
- [10] Wang Zhong-peng(王仲鹏), Chen Ming-xia(陈铭夏), Shangguan Wen-feng(上官文峰). Simultaneous catalytic removal of NO_x and diesel soot over Cu-containing hydrotalcite derived catalysts(类水滑石衍生 CuAlO 催 化剂同时去除碳颗粒和氮氧化物)[J]. Journal of Chemical Physics(物理化学学报), 2009, 25(1): 79-85.
- [11] Li Q, Meng M, Tsubaki N, et al. Performance of K-promoted hyfrotalcite-derived CoMgAlO catalysts used for soot combustion, NO_x storage and simultaneous soot-NO_x removal[J]. Applied Catalysis B: Environmental, 2009, 91(1/2): 406-415.
- [12] Zhao Feng(赵峰), Liu Ying-jun(刘英骏), Li Neng (李能). CO-NO reaction over ABO₂ complex oxides with delafossite structure(ABO₂复合氧化物上 CO-NO 的反应性能)[J]. Journal of Chemical Physics(物理化 学学报), 2001, 17(6): 511-515.
- [13] Fino D, Cauda E, Mesica D, et al. LiCoO₂ catalyst for diesel particulate abatement[J]. Catalysis Today, 2007, 119: 257-261.
- [14] Peng Xiao-sheng(彭小圣), Lin He(林赫), Huang Zhen(黄震), et al. Influence of composition of perovs-kite-type catalysts La_{1-x}A_xB_yMn_{1-y}O₃ on simultaneous removal of NO_x and soot(La-Mn-O 钙钛矿成分对 NO_x 和 碳烟同时催化去除的影响)[J]. Journal of Chemical Engineering of Chinese Universities(高校化学工程学报), 2006, 20(5): 831-836.
- [15] Liang H, Hong Y X, Zhu C Q, et al. Influence of partial Mn-substitution on surface oxygen species of LaCoO₃ catalysts[J]. Catalysis Today, 2013, 201(3): 98-102.
- [16] Li Qian(李倩). Catalytic removal of soot and $\mathrm{NO}_{\scriptscriptstyle x}$ over

Co- or Mn-based hydrotalcite-derived complex oxides catalysts(Co、Mn水滑石基复合氧化物催化剂上碳烟和 NO_x的催化消除). Tianjin university(天津大学) [D], 2009.

- [17] Kang Shou-fang(康守方), Jiang Zheng(蒋政), Hao Zheng-pin(郝郑平). Influence of Cu on NO_x storage performance of Pt/Cu-Mg-Al-O catalysts derived from hydrotalcites(Cu 对 Pt/Cu-Mg-Al-O 催化剂上 NO_x 存储 性能的影响)[J]. Journal of Chemical Physics(物理化 学学报), 2005, **21**(3): 278-281.
- [18] Li Xin-gang(李新刚), Meng Ming(孟明), Lin Peiyan(林培琰), et al. Study of the structure and property of NO_x storage catalyst Pt/Ba-Al-O(NO_x 储存催化剂 Pt/Ba-Al-O的结构域性能研究)[J]. Journal of Molecular Catalysis(分子催化), 2001, 15(3): 165-169.
- [19] Teraoka Y, Shangguan W F, Kagawa S. Reaction mechanism of simultaneous catalytic removal of NO_x and diesel soot particulates [J]. *Research on Chemical Intermediates*, 2000, 26(2): 201–206.

Simultaneously Catalytic Removal of Diesel Particulates and NO_x on K/LiCoO₂ Catalysts

YU Hua-liang, CHEN Ming-xia*, ZOU Gu-chu, YUAN Jian, SHANGGUAN Wen-feng (Research center for combustion and environment technology, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract: LiCoO₂ and potassium loading LiCoO₂ catalyst were prepared by solution combustion method and subsequent dipping method. The prepared catalysts were characterized by XRD, NO_x-TPD, H₂-TPR and the catalytic activity of the catalysts were evaluated by temperature programmed reaction. It is showed that LiCoO₂ is an effective catalyst for simultaneous removal of PM and NO_x. Loading potassium could improve the catalytic activity, 10% K/ LiCoO₂ had minimum light-off temperature (246 °C) and maximum conversion of NO_x to N₂(35.94%). A large number of O²⁻/O⁻ active oxygen species on catalyst surface and the improved NO_x adsorption storage capacity of the catalyst might be the reason for the higher catalytic activity of K/LiCoO₂ **Key words**: LiCoO₂; PM; NO_x; catalytic removal